Waterbrook Lifestyle Resort C/- Marchese Partners Engineering

Geotechnical and Acid Sulfate Soils Assessment: Proposed Seniors Living Development, Cabbage Tree Road, Bayview, NSW

ENVIRONMENTAL

WASTEWATER

GEOTECHNICA

CIVIL

PROJECT MANAGEMENT

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

The document may only be used for the purposes for which it was commissioned. Unauthorised use of this document in any form whatsoever is prohibited. Martens & Associates Pty Ltd assumes no responsibility where the document is used for purposes other than those for which it was commissioned.

Limitations Statement

The sole purpose of this report and the associated services performed by Martens & Associates Pty Ltd is to complete a geotechnical and acid sulfate soils assessment of the subject site in accordance with the scope of services set out in the contract / quotation between Martens & Associates Pty Ltd and Waterbrook Lifestyle Resort C/- Marchese Partners Engineering (the Client). That scope of works and services were defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site.

Martens & Associates Pty Ltd derived the data in this report primarily from a number of sources which may include for example site inspections, correspondence regarding the proposal, examination of records in the public domain, interviews with individuals with information about the site or the project, and field explorations conducted on the dates indicated. The passage of time, manifestation of latent conditions or impacts of future events may require further examination / exploration of the site and subsequent data analyses, together with a re-evaluation of the findings, observations and conclusions expressed in this report.

In preparing this report, Martens & Associates Pty Ltd may have relied upon and presumed accurate certain information (or absence thereof) relative to the site. Except as otherwise stated in the report, Martens & Associates Pty Ltd has not attempted to verify the accuracy of completeness of any such information (including for example survey data supplied by others).

The findings, observations and conclusions expressed by Martens & Associates Pty Ltd in this report are not, and should not be considered an opinion concerning the completeness and accuracy of information supplied by others. No warranty or guarantee, whether express or implied, is made with respect to the data reported or to the findings, observations and conclusions expressed in this report. Further, such data, findings and conclusions are based solely upon site conditions, information and drawings supplied by the Client etc. in existence at the time of the investigation.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between Martens & Associates Pty Ltd and the Client. Martens & Associates Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

@ August 2018 Copyright Martens & Associates Pty Ltd All Rights Reserved

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890 **Phone: +61-2-9476-9999** Fax: +61-2-9476-8767 Email: mail@martens.com.au Web: www.martens.com.au

Document and Distribution Status							
Autho	or(s)	Reviewer(s)		Project Manager/ Director Signature			ature
Gra Han	nt Taylor, Adam Budji, ned Naghibi	Ralph Erni	Erni Gray Taylor		Nor Wary		ingh.
					Documen	t Location	
Revision No.	Description	Status	Release Date	File Copy	Marchese Partners Engineering		
1	Geotechnical and Acid Sulfate Soils Assessment	Draft	12.10.2017	1H, 1P, 1E	1P		
2	Geotechnical and Acid Sulfate Soils Assessment	Final	27.08.2018	1H, 1P, 1E	1P		

Distribution Types: F = Fax, H = Hard copy, P = PDF document, E = Other electronic format. Digits indicate number of document copies.

All enquiries regarding this project are to be directed to the Project Manager.

Contents

1 DEVELOPMENT AND INVESTIGATION SCOPE	6
2 FINDINGS	7
2.1 Site Details and Conditions	7
2.2 Ground Conditions	7
2.3 Groundwater	8
3 GEOTECHNICAL ASSESSMENT	11
3.1 Laboratory Testing	11
3.1.1 Atterberg Limits Testing	11
3.1.2 Rock Coring and Laboratory Test Results	11
3.2 Preliminary Soil and Rock Strength Properties	12
3.3 Risk Assessment of Proposed Development Works	13
3.3.1 Preliminary Slide Model Analysis	14
3.3.2 Conclusion	16
3.4 Foundation Exposure Classification	17
4 GEOTECHNICAL RECOMMENDATIONS	18
4.1 Recommendations	18
4.2 Preliminary Design Parameters	21
4.3 Site Classification	22
5 ACID SULFATE SOILS (ASS) ASSESSMENT	23
5.1 Overview	23
5.2 Desktop Review	23
5.2.1 ASS Risk Map Classification	23
5.2.2 Geomorphic Setting	23
5.3 Laboratory Testing	24
5.3.1 Soil Sampling	24
5.3.2 Laboratory Test Results	25
5.3.3 ASS Classification	27
5.3.4 Action Criteria	27
5.3.5 Conclusion	28
6 PRELIMINARY PAVEMENT THICKNESS DESIGN	29
6.1 Overview	29
6.2 Design Parameters	29
6.3 Pavement Thickness	29
6.4 Earthworks	30
6.4.1 Subgrade Preparation	30
6.4.2 Subsoil Drainage	30
6.4.3 Placement and Testing of Pavement Material	30
6.4.4 Fill Placement	31

6.4.5 Other Considerations	31
7 FURTHER ASSESSMENTS AND MONITORING / INSPECTIONS	32
7.1 Further Works	32
7.2 Construction Monitoring and Inspections	32
8 REFERENCES	34
9 ATTACHMENT A – FIGURES	36
10 ATTACHMENT B – BOREHOLE AND MONITORING WELL LOGS	43
11 ATTACHMENT C – DCP 'N' COUNTS	79
12 ATTACHMENT D – GEOLOGICAL SITE SECTIONS	83
13 ATTACHMENT E – PRELIMINARY LANDSLIDE MODELLING RESULTS	86
14 ATTACHMENT F – GEOTECHNICAL RISK CALCULATIONS	91
15 ATTACHMENT G – LABORATORY TEST CERTIFICATES	94
16 ATTACHMENT H - HILLSIDE CONSTRUCTION GUIDELINES (AGS, 2007)	122
17 ATTACHMENT I – GENERAL GEOTECHNICAL RECOMMENDATIONS	125
18 ATTACHMENT J – NOTES ABOUT THIS REPORT	128

1 Development and Investigation Scope

The proposed development details and investigation scope are summarised in Table 1.

 Table 1: Summary of proposed development and investigation scope.

ltem	Details
Property address	Lot 1 in DP 662920, Cabbage Tree Road, Bayview, NSW
Site area	North western portion of the lot ('the site'), approximately 6.35 ha (based on SIX Maps)
LGA	Northern Beaches Council
Proposed development	Demolition of part of Bayview Golf Course and construction of six new 4 and 5 storey senior living apartment building with basement car parking requiring bulk excavations of up to approximately 13.6 metres below ground level (mBGL) (RL 5.20 mAHD) and new site entry / exit access road.
Assessment purpose	To assist structural design of the proposed development
Previous assessment	A previous preliminary geotechnical and acid sulfate soils assessment was conducted by Martens and Associates (MA) in June 2014 to support a development application (DA) for the proposed seniors living development at the site (referenced P1404179JR03V01, dated June 2014 (MA, 2014)). This report supersedes MA, 2014 with the inclusion of the additional assessment results.
Investigation scope of work	 Twenty three boreholes (refer borehole logs in Attachment B) including: Ten boreholes (BH101 to BH110) up to 6.2 mBGL conducted on 20 May 2014 Thirteen boreholes (BH301 to BH309 and BH311 to BH314) up to 15.0 mBGL conducted on 20 and 21 September 2017 Collection of soil and rock samples for laboratory testings and future reference Installation of three groundwater monitoring wells including MW02, MW03 and MW05 in BH302, BH303 and BH305, respectively (refer well logs in Attachment B). Twenty-nine Dynamic Cone Penetrometer (DCP) tests (refer Attachment C) including: Ten (DCP101 to DCP110) up to 6.2 mBGL conducted on 20 May 2014 Six (DCP201 to DCP206) up to 1.65 mBGL conducted on 4 June 2014 Thirteen (DCP301 to DCP309 and DCP311 to DCP314) up to 2.6 mBGL conducted on 20 and 21 September 2017
Laboratory testing	 Testings carried out by National Association of Testing Authorities (NATA) accredited laboratories included: Point load strength index testing on eight rock core samples, Atterberg Limits testing on two soil samples and CBR testing on two bulk soil samples by Resource Laboratories. sPOCAS analysis on twenty nine soil and weathered rock samples and exposure classification on ten soil samples by Envirolab services.

Geotechnical and Acid Sulfate Soils Assessment: Proposed Seniors Living Development, Cabbage Tree Road, Bayview, NSW P1706099 JR02V03 – August 2018 Page 6

2 Findings

2.1 Site Details and Conditions

General site details are summarised in Table 2.

 Table 2: Summary of site details based on desktop review and site investigations.

Item	Comment
Topography	Within moderately undulating terrain; on a spur extending SE from a NE-SW ridge. Site is blanketing the crest of the spur down to a valley to the SW and floodplains to the S.
Typical slopes, aspect, elevation	Slopes at $10 - 15\%$ to the south and $5 - 10\%$ to the south west. Near southern and south site boundaries land slopes at > 35\% down to site boundaries and Cabbage Tree Road. Some scarps observed in these areas are evidence of previous slope movement. Site elevations vary from 4 mAHD in the south west to 38 mAHD in the north east
Existing Development	Bayview Golf Course (BGC operational)
Vegetation	Grass, predominately mature trees and bushes. The lean of some trees show evidence of slope movement.
Easements	None based on review of survey and site investigation
Drainage	The site generally drains towards the south eastern corner to a pit which discharges to a culvert under Cabbage Tree Road. The outlet of the culvert is piped and discharges south of the BGC maintenance shed to an unnamed creek that connects to golf course dams in the south. The western portion of the site drains towards an unnamed creek crossing the west and south western part of the BGC, eventually draining 50 m south to reservoirs on the BGC and Cahill Creek. Cahill Creek drains into Pittwater (1 km east).
Geology	Narrabeen Group Newport and Garie Formations comprising interbedded laminite, shale and quartz to lithic quartz sandstone (Sydney 1:100,000 Geological Series Sheet 9130).
Soil Landscape	The Sydney 1:100,000 Soil Landscape Map 9130 (Soil Conservation Service of N.S.W) indicates the majority of the site as being part of the Erina erosional landscape, consisting of undulating to rolling rises and low hills. Soils are moderately deep to deep (100 - >200cm). The eastern corner of the site is mapped as being part of the Deep Creek fluvial landscape, consisting of level to gently undulating alluvial floodplains draining the Hawkesbury Sandstone local relief.

2.2 Ground Conditions

Investigation revealed the following key subsurface units likely underlie the site:

<u>Unit A</u>: Assumed uncontrolled fill comprising clay / silt / sandy silt / silty clay / silty sand / clayey sand / gravelly sand / sand with varying consistencies / densities encountered in some portions of the site, particularly southern portion, up to approximately 5.0

mBGL. Fill, encountered in some boreholes, has likely been placed for landscaping and / or levelling purposes.

- <u>Unit B:</u> Topsoil comprising generally stiff to very stiff silt / sandy silt and medium dense silty sand up to approximately 0.7 mBGL.
- <u>Unit C</u>: Alluvial soil comprising firm to stiff sandy clay / clay encountered in south eastern portion of the site (i.e. in BH101 and BH314) up to approximately 5.8 mBGL.
- <u>Unit D</u>: Residual clay / sandy clay / silty clay / sandy silt with consistencies varying between firm and hard and generally dense silty sand / clayey sand encountered up to approximately 5.2 mBGL.
- <u>Unit E</u>: Weathered sandstone and claystone / siltstone from depths of between 0.6 mBGL (BH305) and 5.8 mBGL (BH101), generally from extremely low to low strength with some medium strength bands, up to 15 mBGL (Class V). In BH303 rock strength increased to medium strength from approximately 10 mBGL up to investigation termination depth of 13.4 mBGL (Class IV / III).

Numerous defects and discontinuities, including sheared zones, were observed within cored rock profile. This shearing is considered to be evidence of historical large-scale landsliding, considered to be relict and largely inactive. Evidence of more recent shallow movements, such as leaning trees and hummocky ground was observed within south western and southern portions of the site.

2.3 Groundwater

A review of the NSW Department of Primary Industries Water (DPIW) real time groundwater bore database revealed that there are two bores located within 500 m of the site with available groundwater data (Figure 1). Standing water level data from the database is shown in Table 3.

Figure 1: DPIW real time groundwater bore database search within 0.5 km of the site

Bore #	Approx. Distance From Site	Approximate Elevation (mAHD) ¹	Standing Water Level (mBGL)	Approx. Groundwater Level (mAHD)
GW111610	South east, 180 m	3	1.2	1.8
GW105256	West, 285 m	62	18.0	44.0

Table 3: DPIW real time groundwater details for two bores in the vicinity of the site.

<u>Notes:</u>

1. From Google Earth.

Groundwater inflow was encountered only during drilling of BH101 at 5.0 mBGL (RL 0.8 mAHD). This borehole is located on the lower slopes of the site (near Cabbage Tree Road) underlain by alluvial sediments (silty clay) to about 0.0 mAHD. Groundwater inflow was not encountered during drilling of other boreholes, which were drilled into the residual soil unit (except for BH314), up to 8.5 mBGL or observed below this depth due to the introduction of drilling fluids during rock coring.

Groundwater wells (MW02, MW03 and MW05) were installed to depths of 12.0 m, 13.4 m and 15.0 m with slotted screen lengths of 6.0 m, 10.4 m and 9 m, respectively. Summary of groundwater level readings within monitoring wells, undertaken on September and October 2017, are provided in table 4.

 Table 4: Summary of groundwater levels at MW02, MW03 and MW05 (September and October 2017).

Data	Gro	oundwater Level (mBG	L)
Dale	MW02	MW03	MW05
21.09.17 (following installation) ¹	10.44	10.7	8.11
20.10.17	11.86	12.62	13.69

Notes:

¹ Readings are likely to have been influenced by inflow of drilling fluids introduced during rock coring.

We note that monitoring and recorded levels are within a dry period (i.e. no substantial rain in the last 3 months) and therefore these levels are considered not to be representative of the average or peak groundwater levels. Actual levels are likely to be 1 - 2 m greater than what was recorded on 21.10.17. To get a better understanding and more accurate assessment of groundwater levels / impacts through the site, groundwater level monitoring would need to be extended to cover 2 - 3 substantial at a minimum (i.e. greater than 10 mm of rain within 24 / 48 hrs).

Based on DPIW search results and field investigations we expect deep excavations, particularly in lower portions of the site, will intercept the permanent groundwater table. Groundwater level data loggers have been installed in monitoring wells and results of further monitoring will be provided in a letter after completion of readings to assess permanent water levels, where encountered.

3 Geotechnical Assessment

3.1 Laboratory Testing

3.1.1 Atterberg Limits Testing

Table 5 presents a summary of test results. A laboratory test certificate is provided in Attachment G.

BLI	Depth	Soil		Atterberg Lim	its (%)		Plasticity
ВП	(mBGL)	Туре	LL ¹	PL ¹	PI ¹	LS ¹	Classification
BH302	0.8	Silty CLAY	29	22	7	4.5	Low
BH304	1.0	Sandy CLAY	44	17	27	8.5	Medium

Table 5: Summary of laboratory test results.

Notes:

¹ LL = Liquid limit, PL= Plastic limit, PI=Plasticity index, LS = Linear shrinkage

Laboratory test results indicate that the fine portion of the tested soil samples are generally of low and medium plasticity with a non-critical degree of reactivity to soil moisture content fluctuations.

3.1.2 Rock Coring and Laboratory Test Results

Laboratory test results are summarised in Table 6. A laboratory test certificate is provided in Attachment G. Rock core photos are provided in Figures 5 to 7, Attachment A.

Test results and observations during rock coring confirm that the rock at the development area is typically of extremely low and low strength sandstone / claystone / siltstone with some medium strength bands up to 15 mBGL, except for BH303 at which rock is of medium strength from approximately 10 mBGL up to investigation termination depth of 13.4 mBGL. It should be considered that testing was carried out on relatively intact core samples. Engineering properties of the rock mass will be impacted by the presence of the numerous defects and discontinuities including weathered, sheared and fractured zones observed in the rock profile. Some of these are considered to be associated with the previous large-scale landslide, which would further reduce rock strength. Rock strength properties and design parameters provided in the following sections have been estimated, considering the presence of highly sheared / fractured rock as well as laboratory test results. Supplementary investigations, including rock coring, may need to be carried out in the

south and southern portions of the site to better understand the extent and condition of sheared / fractured rock across the site.

Borehole	Sample Depth	Point Load Stren (MP	Point Load Strength Index I _{s(50)} (MPa)		Rock Strength ²	
	(mBGL)	Diametral	Axial	(Mi C)		
	4.0	0.095	0.120	1.9-2.4	Very low to low	
BH302	8.6	0.190	0.530	3.8-10.6	Low	
	10.67	0.045	0.049	0.9-1.0	Very low	
	2.62	0.034	0.016	0.3-0.7	Extremely to very low	
BH303	7.8	0.130	0.098	2.0-2.6	Very low to low	
	13.12	0.440	0.510	8.8-10.2	Medium	
BH305	4.65	0.047	0.045	0.9-1.0	Extremely to very low	
	14.15	0.076	0.068	1.4-1.5	Very low	

Table 6: Point load strength index testing results.

<u>Notes:</u>

1. Unconfined Compressive Strength of intact material, assuming UCS = $20 \times I_{s(50)}$.

2. Strength classification based on AS1726 (2017).

3.2 Preliminary Soil and Rock Strength Properties

Preliminary material properties have been estimated from field test results in conjunction with borehole derived soil / rock profile data and laboratory test results as well as engineering assumptions. They are summarised in Table 7.

Table 7: Preliminary estimates of soil and rock strength properties.

Unit ¹	Y _{in-situ} 2 (kN/m³)	Cu ³ (kPa)	Φ' 4 (deg)	E' ⁵ (MPa)	UCS 4 (MPa)
Assumed uncontrolled FILL / TOPSOIL: (varying consistencies / densities)	16	NA ⁸	NA ⁸	NA ⁸	NA ⁸
ALLUVIAL / RESIDUAL: CLAY / sandy CLAY / silty CLAY (firm to stiff)	17	30	NA ⁸	5	NA ⁸
RESIDUAL: CLAY / sandy CLAY / silty CLAY (very stiff to hard)	18	100	NA ⁸	20	NA ⁸
WEATHERED ROCK: SANDSTONE / SILTSTONE / CLAYSTONE (Class V) ⁷	22	NA ⁸	24	50	0.3-10.6
WEATHERED ROCK: SANDSTONE / SILTSTONE / CLAYSTONE (Class IV / III) ⁷	23	NA ⁸	32	500	8.8-10.20

<u>Notes:</u>

- ¹ Refer to borehole logs in Attachment B for material description details at test locations.
- ² Inferred average in-situ unit weight, based on visual assessment only (± 2 kN/m³).
- ³ Undrained shear strength (± 5 kPa), considering normally consolidate clay.
- ⁴ Internal friction angle (± 2 °) assuming drained conditions; may be dependent on rock defect conditions e.g. a reduction of 5-10 ° may need to be considered in sheared zones.
- ⁵ Effective elastic modulus (±10 %).
- ⁶ Assumed average range of unconfined compressive strength of intact material.
- P.J.N Pells et al (1998) Foundations on Sandstone and Shale in the Sydney Region.
- ⁸ Not applicable.

3.3 Risk Assessment of Proposed Development Works

Some portions of the site including north western, western and southern most portions are mapped on the Northern Beaches Council landslip risk map as 'Geotechnical Landslip Hazard H1' (refer Figure 3 in Attachment A).

Current site topography and observed defects and discontinuities encountered in the rock profile indicate that the site has likely been impacted by historical large-scale landslides and subsequent smaller movements of resultant steepened slopes. Evidence of recent slope movement was observed. We expect historical large scale landslide to be relict and largely inactive.

A geotechnical hazard risk assessment for the proposed works has been completed in accordance with the qualitative risk matrices provided in Section 7 of the Australian Geomechanics Society's Landslide Risk Management Guidelines (AGS, 2007). It is considered that four potential forms of geotechnical hazard are possible at the site (translational slide, rotational slide, soil creep and lateral spread). Of these, shallow and deep slides are most likely to impact the proposed development. A

summary of these hazards is presented in Table 8. The assessment is based on implementation of treatment measures, shown as a minimum. Risk evaluation calculations are provided as Attachment F.

			<u>Risk to Life</u>		Risk to Property	
Description	Treatment Measures	Likelihood ¹	Established Probability ²	Risk	Consequence	Risk
Shallow slide (Fill and residual soils)	Maintain vegetation of undeveloped areas. Provide subsurface drainage where possible. Limit surface water ponding at crest of embankments/top of slopes. Ensure appropriate foundations and footings design.	Rare ¹	7.77 x 10 ^{.7}	Acceptable	Low	Low
Deep slide (rock)	Good hill slope engineering practice. Do not over-steepen natural grades. Provide adequate surface and sub-surface drainage. Footings to be taken to sandstone bedrock. Do not place fill over topsoil or alluvial silt.	Unlikely1	9.42 x 10 ⁻⁷	Acceptable	Low	Low

 Table 8: Summary of slope instability risk assessment, based on AGS (2007).

Notes:

¹ Based on 'treated' site conditions.

² Annual probability of loss of life of an individual.

Inferred geological cross sections are presented in Attachment D. A SLIDE model has been undertaken to assess the stability risk of the fill material along the southern parts of the site to the proposed development.

3.3.1 Preliminary Slide Model Analysis

3.3.1.1 Modelling Methodology and Assumptions

A slope stability analysis was undertaken using the *SLIDE 6.0* modelling software for the fill embankment located along the southern boundary and adjacent to Cabbage Tree Road. The cross section modelled was considered the worst case scenario (having slopes of approximately 50 degrees) along the existing embankment (Attachment E, Figures 10 and 11). SLIDE modelling was carried out to assess the impact of indicative stresses imposed by the proposed facilities and basement car park buildings adjacent to the embankment. This allows for the assessment of

Factor of Safety (FOS) against sliding for existing ground conditions and under loading (i.e. proposed development) conditions. We provide the following comments:

- Additional penetration tests were conducted in the vicinity of the existing embankment (Attachment C) to identify depth to rock downslope of the embankment.
- Existing ground levels were taken from existing survey data by Bee & Lethbridge Pty Ltd (dated April 2014, drawing number 18990).
- Two modelling scenarios were assessed based on the proposed development: Embankment with loading assuming a design load of 150 kPa; and without loading.
- The existing soil overburden comprises fill overlying a layer of residual clay overlying weathered rock.

3.3.1.2 Material Properties

A summary of strength properties used in the model is provided in Table 9. Soil strength parameters were estimated based on penetration test data. We have assumed that the fill generally consists of cohesive materials.

Materials	Y _{dry} ¹	C _u (kPa) ²	φ' (deg) ³
Soil Overburden: Fill/Clay	15	15	-
Weathered rock	23	-	32

 Table 9: Estimated strength properties of soil and rock used in SLIDE 6.0 model.

Notes:

¹ In-situ dry unit weight (±2).

 $^{\rm 2}$ Assumed undrained cohesion (±5) assuming unconsolidated clays.

³ Effective friction angle (±2) assuming drained conditions.

3.3.1.3 Results

A design minimum factor of safety (FOS) of 1.0 was adopted. The minimum FOS for global slip failure for the analysed scenarios are summarised in Table 10. Slide modelling results are provided in Attachment E, Figures 12 and 13.

 Table 10: Minimum FOS for global slip failure from SLIDE 6.0 modelling.

Loading Conditions	FOS
Existing embankment without any additional external stresses	1.5
Existing embankment assuming typical strip footing loading of 150kPa	0.70

3.3.1.4 Summary and Recommendations

Based on the slide modelling results we provide the following comments:

- The existing fill embankment has been modelled resulting in a FOS of 1.5.
- The stresses imposed at the southern section of the development area (assuming a typical design load of 150kPa) are likely to impact the underlying soil and weathered rock profile resulting in a FOS of 0.70.
- We recommend all footings for new structures along the fill embankment are taken through the soil profile and founded in sound bedrock.
- Slope vegetation should be retained, where possible.
- Appropriate surface and subsurface drainage should be provided to limit saturation of the soil profile.
- 3.3.2 Conclusion

Based on risk calculations and SLIDE modelling the proposed development is considered to constitute an acceptable risk to life and a low risk to property resulting from geotechnical hazards and is considered acceptable provided risks are mitigated by good hill slope engineering practices and the recommendations of this report are implemented. A description of good hill slope engineering practices is provided as Attachment H.

3.4 Foundation Exposure Classification

Sulphate and pH test results for exposure classification are summarised in Table 11, and the laboratory test certificate is provided in Attachment G.

Sample ID ¹	Material	nН	Sulphate (SO4)	(SO ₄) Chloride (Cl) Exposure Classification		Exposure Classification		
Sample ib	Marchar	РП	(mg/kg)	(mg/kg)	AS 2159 ²	AS 2159 ³	AS 3600 4	
6099/BH302/0.3	Sandy Clayey SILT	6.9	21	< 10	Non-aggressive	Non-aggressive	Al	
6099/BH302/0.9	Sandy Clayey SILT	7.3	45	10	Non-aggressive	Non-aggressive	Al	
6099/BH303/0.2	SILT	7.0	10	23	Non-aggressive	Non-aggressive	Al	
6099/BH303/0.5	Silty CLAY	5.6	23	27	Non-aggressive / Mild	Non-aggressive	Al	
6099/BH304/0.2	Sandy SILT	5.6	10	20	Non-aggressive / Mild	Non-aggressive	Al	
6099/BH304/0.5	SILT	5.7	< 10	5.7	Non-aggressive / Mild	Non-aggressive	Al	
6099/BH305/0.3	Silty SAND	5.2	< 10	5.2	Mild	Non-aggressive	A2	
6099/BH309/0.4	Silty CLAY	5.0	20	5.0	Mild	Non-aggressive	A2	
6099/BH312/0.2	Silty SAND	6.6	10	6.6	Non-aggressive	Non-aggressive	Al	
6099/BH312/1.4	CLAY	7.0	20	7.0	Non-aggressive	Non-aggressive	Al	

Table 11: Exposure classification test results.

<u>Notes:</u>

- 1. Project#/Borehole#/Depth (mBGL).
- 2. Exposure classification for concrete piles in soil based on Table 6.4.2(C) of AS 2159 (2009).
- 3. Exposure classification for steel piles in soil based on Table 6.5.2(C) of AS 2159 (2009).
- 4. Exposure classification for buried reinforced concrete based on Tables 4.8.1 and 4.8.2 of AS 3600 (2009).

In accordance with AS2159 (2009), exposure classifications of "Mild" and "Non-aggressive" should be adopted for preliminary design of buried concrete and steel piles, respectively. In accordance with AS3600 (2009), an exposure classification of 'A2' should be adopted for shallow concrete footings.

4 Geotechnical Recommendations

4.1 Recommendations

Geotechnical recommendations for site development are provided below in Table 12. Further general geotechnical recommendations are provided in Attachment I.

	Table	12:	Geotechnical	recommendation
--	-------	-----	--------------	----------------

Geolechnical issue	Recommendations					
Excavations and	The following excavation techniques may be adapted:					
Vibrations	 Soils should be readily excavated using conventional earthmoving equipment. 					
	 Extremely low to low strength rock should generally be readily excavated with a 'toothed' bucket or a ripping tyne (or similar) although progress may be slow in low strength rock containing medium strength bands. 					
	 Rock breaker of ripping tyne attachments may be required for excavation of medium strength sandstone, if encountered. 					
	All excavation work should be completed with reference to the most recent version of Code of Practice 'Excavation Work', by Safe Work Australia. Excavation method statements will need to be prepared by the excavation contractor prior to the issue of CC.					
	Consideration should be given to the use of rock sawing techniques, if medium strong rock is encountered, prior to the use of hydraulic hammer equipment to reduce noise and vibrations.					
Batter Slopes / Shoring Methods	Soils Any temporary or permanent excavations into soil exceeding 0.75 m depth should be supported by suitably designed and installed retaining or shoring structures or, alternatively, using batter slopes of 1V:2H for temporary slopes (unsupported for less than 1 month) and 1V:3H for permanent long term unsupported slopes. It is recommended that unsupported soil excavations deeper than 1.0 m should be assessed by a geotechnical engineer for slope instability risk.					
	Rock Temporary and permanent excavations for extremely low to low strength rock may be battered at 1V:2H. This batter may be increased to 1V:1H, subject to inspection and approval by a geotechnical engineer on site during excavation (i.e. likely every 1 m depth). Due to numerous shear zones and weak seams within this rock, additional stabilisation measurements, such as shotcrete, may be required. Medium strength rock can be battered at 4V:1H or steeper, provided there are no adversely oriented joints or defects in the rock. It is recommended that all excavated rock faces be inspected by a geotechnical engineer to determine whether any additional support, such as rock bolts or shotcrete, is required.					
	Where there is insufficient room for temporary batters, excavations will need to be supported by temporary shoring or permanent retaining walls such as a soldier pile/infill panel wall system.					
	Heavy Machinery					
	Use of heavy machinery should be avoided, where possible, within 2 m of any					

Geotechnical and Acid Sulfate Soils Assessment: Proposed Seniors Living Development, Cabbage Tree Road, Bayview, NSW P1706099JR02V03 – August 2018 Page 18

Geotechnical Issue	Recommendations
Rock support	Steeply dipping joints and sheared zones, observed within the rock core, may have an adverse effect on rock face stability and construction safety. Geotechnical mapping of the excavation should be conducted in 1.5 m height increments to identify such features and allow early mitigation of risks of rock movement, such as by installation of rock anchors or bolts.
	The presence of weakly cemented (extremely weathered) seams and sheared zones within the rock may adversely affect the stability of the cut faces and may require shotcreting and rock bolting.
	Rock support should be specified in terms of performance requirements and installed / placed by contractors experienced in ground anchor technology and on advisement by an experienced geotechnical engineer. Rock support should not extend beyond property boundaries unless approval has been granted by relevant property owners or stakeholders. The actual amount of stabilisation which will be required cannot be quantified at this stage and can only be determined at the time of construction. Martens and Associates can complete the necessary mapping and provide advice for possible remediation measures, where required.
Sub-grade Preparation	We recommend that any stripping of soil or sub-grades be undertaken at the on-set of excavation and suitably stockpiled for on-site re-use (where possible) or off-site disposal to a suitable location in accordance with NSW DECC (2009) Waste Classification Guidelines.
	For soil sub-grade areas where fill is to be placed to raise site levels and where on-grade slabs are to be constructed, preparation of sub-grade should consist of:
	 Compact the sub-grade with a minimum 12 tonne deadweight smooth drum vibratory roller to achieve a minimum density index (ID) of 65 % or a minimum density of 98 % Standard Maximum Dry Density (SMDD) for cohesionless soil (within +/- 2% of optimum moisture content (OMC)).
	 Proof rolling should be closely monitored by the project geotechnical engineer to detect soft or unstable areas which should be removed and replaced with engineered fill or alternatively stabilised or bridged.
	Density tests should be carried out at a frequency of one test per layer per 500m ² or three (3) tests per visit, whichever requires the higher number of tests, to confirm the specifications provided in this report have been achieved. At least Level 2 testing of earthworks should be carried out in accordance with AS3798 (2007). Any areas of insufficient compaction will require reworking.
	Engineered fill is to be free from organic materials, other contaminants and deleterious substances and have a maximum particle size of 40 mm. We consider that the excavated clayey soil and weathered sandstone will be suitable as engineered fill. It should be placed in layers of a maximum 100 mm loose thickness and compacted to at least 98 % SMDD and within +/- 2% of OMC, which can be reduced to 95 % SMDD in landscaped areas. Further testing will be required to confirm this.
	All site earthworks should be undertaken in accordance with AS3798 (2007) and Aus-Spec 213 (2004).
Footings and Foundations	Footings of the proposed buildings should be founded in rock below zones affected by slope movement, i.e. sheared rock, using shallow footings or piers, depending on foundation level. They should be designed by a suitably qualified and experienced structural or geotechnical engineer. Estimated soil and rock strength parameters are provided in Section 4.2.
	All footings should be poured after excavation with minimal delay. All excavated bases should be free from all loose or softened materials prior to pouring. If water ponds in the base of the excavations, they should be pumped dry and then re-excavated to remove all loose and softened materials. If a

Geotechnical and Acid Sulfate Soils Assessment: Proposed Seniors Living Development, Cabbage Tree Road, Bayview, NSW P1706099JR02V03 – August 2018 Page 19

Geotechnical Issue		Recommendations
		delay in pouring is anticipated, a concrete blinding layer of at least 50 mm thickness is to be placed to protect the base of the footing excavation. All footing excavations should be inspected by a geotechnical engineer to confirm the required founding strata has been reached.
Groundwater		It is considered that the proposed excavations, particularly in lower portions of the site, will likely intercept the groundwater table. This should be confirmed based on groundwater monitoring data. Some seepage of surface water infiltration during and after rainfall events may also be encountered at the transition between residual soil and rock. We expect that sump and pump methods will be appropriate for removal of surface water and groundwater inflows, during and post construction, subject to final assessment of hydrogeological data. Basements associated with buildings in lower portions of the site may need to be designed as a tanked structure with inclusion of appropriate water proofing, depending on assessment results. All site discharges should be passed through a filter material prior to release to the Council stormwater system or approved alternative. Groundwater ingress should be monitored during excavation by a geotechnical engineer. Appropriate surface and sub-surface drainage should be provided upslope of the development to divert overland flows and groundwater away from excavation, and limit ponding of water in excavations and near footings.
Basement Car Retaining Walls	Park	Basement retaining wall design should take appropriate surcharge and hydrostatic load into account and be designed adopting the preliminary geotechnical parameters provided in Sections 3.2 and 4.2. Potential impacts associated with previous slope movement should also be considered. Retaining structures may comprise soldier piles and shotcrete in fill panels, restrained with the aid of temporary soil anchors or bracing. Alternatively, cantilevered or anchored reinforced concrete contiguous pile walls may be adopted to support the excavation faces. Anchors should be proof tested to at least 1.3 times the working load under the supervision of a geotechnical engineer independent of the contractor. Pre- stressed anchors should be "locked off" at not greater than 85 % of the design working load. Backfill materials between the basement retaining wall and the rock face should comprise a high strength, durable, single sized washed aggregate, such as 'blue metal' gravel. Fill should be placed in a maximum of 200 mm horizontal layers and compacted using a hand held compactor. Care should be taken to ensure excessive compaction stresses are not transferred to retaining walls. Backfill areas to be geotextile wrapped with base drainage system.
		dissipate pore pressures from water that may collect behind diriteratining walls to dissipate pore pressures from water that may collect behind the retaining walls. Further consideration may need to be given to drainage below any basement slabs. Final drainage design is to be developed at construction phase of the project, following detailed structural design and additional pump testing to confirm likely groundwater inflow rates.
Trafficability Construction Assess	and	Trafficability across exposed soil/sub-grade materials and weathered rock is expected to be adequate in dry weather for most construction plant such as conventional rubber tyre plant, four-wheel drive plant and track mounted plant. During wet weather, trafficability of all heavy machinery on exposed soil/sub- grade materials may be reduced. Provision for site grading, temporary open drains or toe/crest drains is suggested to collect any overland flow, prevent water ponding and hence minimise potential for any further soil/sub-grade softening or erosion, and to help improve trafficability. The use of dumped aggregate for temporary construction roads may be necessary to allow works during and immediately following wet weather.

Geotechnical Issue	Recommendations
Overland Flows	There exists a potential for stormwater flows to enter excavated areas during construction. All surface runoff should be diverted away from excavation areas during construction works. All site discharges should be passed through a filter material prior to release. Diverted flows should be directed (where possible) to a suitable stormwater system so as to prevent water accumulating in areas surrounding retaining structures, footings or the crest of embankments.
Soil Erosion Control	Removal of soil overburden should be performed in a manner that reduces the risk of sedimentation occurring in the Council stormwater system and on neighbouring lands. All spoil on site should be properly controlled by erosion control measures to prevent transportation of sediments off-site. Appropriate soil erosion control methods in accordance with Landcom (2004) shall be required.

4.2 Preliminary Design Parameters

Preliminary design parameters for footings are presented in Table 13. These have been estimated from field test results in conjunction with borehole derived soil / rock profile data. The design parameters assume the base of excavation is free of water prior to placement of concrete and approved following inspection by an experienced geotechnical engineer.

Table	13:	Preliminary	geotechnical	parameters	for	soil	and	rock	encountered	in
boreho	oles.									

	Shallow Footings	Bored	Piers			
Layer	AEB 1&4 (kPa)	AEB ^{28.4} (kPa)	ASF ^{3&4} (kPa)	K a ⁵	K p ⁵	K 0 ⁵
Assumed uncontrolled FILL / TOPSOIL: (varying consistencies / densities)	NA ⁶	NA ⁶	NA ⁶	0.40	2.50	0.55
ALLUVIAL / RESIDUAL: CLAY / sandy CLAY / silty CLAY (firm to stiff)	NA ⁶	NA ⁶	NA ⁶	0.40	2.50	0.55
RESIDUAL: CLAY / sandy CLAY / silty CLAY (very stiff to hard)	200	NA ⁶	15	0.36	2.77	0.53
WEATHERED ROCK: SANDSTONE / SILTSTONE / CLAYSTONE (Class V)	450	700	100	0.33	3.00	0.50
WEATHERED ROCK: SANDSTONE / SILTSTONE / CLAYSTONE (Class IV / III)	750	1500	300	NA ⁶	NA ⁶	NA ⁶

Notes:

- ¹ Allowable end bearing pressure (kPa) for shallow footings embedded at least 0.3 m and piles embedded at least 1 m or 1 pile diameter, whichever is greater, into the design material type.
- ² Assuming bored, cast in-situ concrete pile.
- ³ Allowable skin friction (kPa) for bored pile in compression, assuming intimate contact between pile and foundation material. For up lift resistance, we recommend reducing ASF by 50% and checking against 'piston' and 'cone' pull-out mechanisms in accordance with AS2159 (2009).
- ⁴ AEB and ASF are given with estimated factors of safety of 3 and 2 respectively, generally adopted in geotechnical practice to limit settlement to an acceptable level for conventional building structures.

 ${}^{5}k_{a}$ = Coefficient of active earth pressure; k_{p} = Coefficient of passive earth pressure; k_{0} = Coefficient of earth pressure at rest.

⁶ Not applicable, or not recommended either due to depth or potential internal settlement of materials.

4.3 Site Classification

The site is classified as a class 'P' site in accordance with AS 2870 (2011), due to slope movement risk and variable ground conditions across the site. Subject to the inclusion of appropriate slope risk mitigation measures and on-site assessment of foundation conditions and confirmation by a geotechnical engineer at construction stage, a reclassification of 'H1' may be considered for design of shallow footings.

5 Acid Sulfate Soils (ASS) Assessment

5.1 Overview

The objectives of this ASS assessment include determining the presence of actual or potential ASS risks via geomorphic observations and laboratory testing of soils, and where required, provide an ASS management plan for the proposed development.

5.2 Desktop Review

5.2.1 ASS Risk Map Classification

The Pittwater Councils Acid Sulphate Soils Map categorises the site as Class 5 land, except for the south eastern corner, which is categorised as Class 2 land. Site location relating to ASS risk is presented in Figure 4, Attachment A.

5.2.2 Geomorphic Setting

The likelihood of ASS occurrence at a site is a function of various geomorphic parameters, in particular those listed in Table 14 (ASSMAC, 1998). Each is an indicator that ASS are likely to be present onsite.

Table 14: Geomorphic features indicative of acid sulfate soils.	

	Present on Site?			
Geomorphic Characteristic	Class 5 land	Class 2 Iand		
Holocene sediments	No	Yes		
Soil horizons less than 5 mAHD	No	Yes		
Marine / estuarine sediments or tidal lakes	No	Yes		
Coastal wetland; backwater swamps; waterlogged or scaled areas; swales or coastal sand dunes	No	Unknown ²		
Dominant vegetation is mangroves, reeds, rushes and other swamp or marine tolerant species	No	Unknown ²		
Geologies containing sulfide bearing material / coal deposits or former marine shales/sediments	Possible 1	Yes		
Deep older (Pleistocene) estuarine sediments	No	Unlikely		

<u>Notes:</u>

¹ Possible for fill materials.

² May have been present prior to previous development.

Some of the geomorphic features listed are either present or may formerly have been present within predominately the southern part of the site and possibly in filled areas of the site. The geomorphic setting of this area indicates that actual or potential ASS are likely to be present and laboratory testing of soils is required.

5.3 Laboratory Testing

5.3.1 Soil Sampling

Twenty-nine soil and weathered rock samples were collected from boreholes (Table 15) and submitted for sPOCAS analysis.

вн	Approximate Surface Elevation (mAHD)	Material	Sample Depth (mBGL)	Approximate Sample Elevation (mAHD)
		Sandy CLAY	0.5	5.5
		CLAY	1.0	5.0
BH101	6.0	CLAY	2.5	3.5
		Silty CLAY	3.5	2.5
		Silty CLAY	4.5	1.5
NU100	0.0	Sandy CLAY	1.0	8.0
BH102	9.0	Weathered SANDSTONE	2.0	7.0
BH103		Weathered SANDSTONE	1.5	18.5
	20.0	Weathered SANDSTONE	2.0	18.0
BH104	26.0	CLAY	0.5	25.5
BH105	23.0	CLAY	1.0	24.0
DU107	22.0	Silty SAND	0.5	21.5
BH106	22.0	Weathered SANDSTONE	1.5	20.5
		CLAY	1.0	10.0
BH107	11.0	Silty SAND	1.5	9.5
		Silty SAND	3.5	7.5
BH108	14.0	Weathered SANDSTONE	2.0	12.0

 Table 15: Summary of samples analysed by laboratory for sPOCAS.

Geotechnical and Acid Sulfate Soils Assessment: Proposed Seniors Living Development, Cabbage Tree Road, Bayview, NSW P1706099JR02V03 – August 2018 Page 24

ВН	Approximate Surface Elevation (mAHD)	Material	Sample Depth (mBGL)	Approximate Sample Elevation (mAHD)
BH109	14.0	Silty SAND	0.5	13.5
		CLAY	1.0	12.0
BH110	13.0	Weathered SANDSTONE	1.5	11.5
		Weathered SANDSTONE	3.0	10.0
RU200	10.7	Sandy Clayey SILT	0.3	19.4
DHJUZ	17./	Sandy Clayey SILT	0.9	18.8
		Sandy CLAY	0.3	6.7
BH306	7.0	CLAY	1.4	5.6
		Silty CLAY	2.7	4.3
BH312	17.2	CLAY	1.4	15.8
DU 1212	7.0	Silty SAND	0.2	6.8
BH313	7.0	Clayey SAND	0.5	6.5

5.3.2 Laboratory Test Results

Laboratory test results are summarised in Table 16 with the complete laboratory report provided in Attachment G.

	Table	16: ASS	(spocas)	testing results.
--	-------	---------	----------	------------------

ВН	Sample Depth (mBGL)	Grain Size	ρΗ κςι 1	pHox ²	TPA ³	TSA 4	Spos ⁵
	0.5	F	6.3	6.3	5	5	0.01
	1.0	F	7.4	5.1	5	5	0.01
BH101	2.5	F	4.1	3.9	70	16	0.01
	3.5	F	5.1	4.9	92	51	0.05
	4.5	F	4.7	4.3	85	44	0.03
BH102	1.0	F	4.5	4.4	20	5	0.01
	2.0	С	3.9	3.7	57	9	0.01
BH103	1.5	С	5.9	5.3	5	5	0.01

Geotechnical and Acid Sulfate Soils Assessment: Proposed Seniors Living Development, Cabbage Tree Road, Bayview, NSW P1706099JR02V03 – August 2018 Page 25

ВН	Sample Depth (mBGL)	Grain Size	ρΗ κcl ¹	pHox ²	TPA ³	TSA 4	Spos ⁵
	2.0	С	4.2	4.6	17	5	0.01
BH104	0.5	F	3.8	3.5	150	56	0.01
BH105	1.0	F	4.1	3.7	90	11	0.01
DU10/	0.5	м	4.6	3.9	5	5	0.01
DHIUO	1.5	С	4.2	4.3	26	5	0.01
	1.0	F	4.2	4.3	32	5	0.01
BH107	1.5	м	6.0	6.0	5	5	0.01
	3.5	м	5.1	4.5	5	5	0.01
BH108	2.0	С	5.0	3.3	5	5	0.02
BH109	0.5	м	5.0	3.3	5	5	0.02
	1.0	F	4.2	4.2	45	5	0.01
BH110	1.5	С	4.5	4.4	35	5	0.01
	3.0	С	3.9	3.9	60	5	0.01
BH302	0.3	F	8.2	6.7	< 5	< 5	0.03
	0.9	F	7.2	6.4	< 5	< 5	0.04
BH306	0.3	F	8.7	7.8	< 5	< 5	0.02
	1.4	F	4.2	3.8	55	9	0.01
	2.7	F	6.3	5.3	< 5	< 5	0.01
BH312	1.4	F	7.7	7.3	< 5	< 5	0.01
BH313	0.2	м	5.2	4.9	< 5	< 5	0.01
	0.5	М	4.5	4.2	30	< 5	< 0.01
Fine Grained (F) (> 40 % clay)							
Guideline Limit	Medium Grained (M) (5-40 % clay)			18	18	0.03	
(action criteria) 6	Coarse Grained (C) (< 5 % clay)						

Notes:

1. pH (actual acidity).

2. pH after oxidation with peroxide (potential acidity).

3. Titratable Peroxide Acidity (Moles H+/tonne).

4. Titratable Sulfidic Acidity (Moles H+/tonne).

Geotechnical and Acid Sulfate Soils Assessment: Proposed Seniors Living Development, Cabbage Tree Road, Bayview, NSW P1706099JR02V03 - August 2018

- 5. Oxidisable sulphur (%).
- 6. ASSMAC (1998) p.27, for 1-1,000 tonnes disturbed soil. Bolded values in table indicate exceedance of ASSMAC action criteria considering expected > 1000 tonnes soil disturbance.

5.3.3 ASS Classification

Based on the pH_{KCL} and post peroxide oxidation pH_{OX} criteria derived from the ASSMAC (1998) guidelines:

- o Soils with a pH_{KCL} of \leq 4.0 are classified as actual ASS.
- \circ Soils with pH_{KCL} pH_{ox} > 1 are classified as potential ASS.
- \circ Soils with pH_{ox} < 3.5 are classified as potential ASS.

On the basis of these criteria we conclude the following:

- Three samples including two weathered rock samples (BH102 depth 2.0 m and BH110 depth 3.0 m) and one residual clay sample (BH104, depth 0.5 m) are classified as actual ASS.
- Four samples including one weathered rock sample (BH108 depth 2.0 m) and three soil samples (BH101 depth 1.0 m (fill), BH109 depth 0.5 m (topsoil) and BH302 depth 0.3 m (residual)) are classified as potential ASS.
- The remaining tested samples are neither actual nor potential ASS.

5.3.4 Action Criteria

According to Table 4.4 of ASSMAC (1998), a detailed management plan is required if the soil exhibits one of the following criteria (for >1,000 tonnes disturbed soil):

- Oxidisable sulphur (SPOS) is \ge 0.03%; or
- TPA or TSA is $\geq 18 \mod H^+/tonne$.

On the basis of these action criteria we conclude that thirteen samples including three fill samples, one alluvial sample, five residual soil samples and four weathered rock samples (i.e. BH101 depths 2.5 m and 3.5 m (fill) and 4.5 m (alluvial), BH102 depth 2.0 m (weathered sandstone), BH104 depth 0.5 m (residual), BH105 depth 1.0 m (residual), BH106 depth 1.5 m (weathered sandstone), BH107 depth 1.0 m (fill), BH110 depths 1.0 m (residual),1.5 m and 3 m (weathered sandstone), BH306 depth 1.4 m (residual) and BH313 depth 0.5 m (residual)) exceed the criteria based on TPA, TSA and S_{pos}.

5.3.5 Conclusion

- AAS criteria exceedance within the proposed apartment building area was found in some sandstone bedrock samples and overlying clay samples. The origin of this acidity is therefore likely to be related to geology rather than from ASS. We conclude that preparation of a management plan is not essential for construction works (based on the current development proposal) of the proposed buildings as they are predominantly located within the residual soil landscape.
- AAS action criteria exceedance within the south eastern portion (proposed new entry / exit road) was found in one alluvial soil sample. We conclude that preparation of a management plan is required for any construction works, including the proposed new entry / exit road, within the south eastern portion of the site.

6 Preliminary Pavement Thickness Design

6.1 Overview

A preliminary pavement thickness design was undertaken for the proposed new entry / exit to the site. The design adopted a traffic loading of Equivalent Standard Axles (ESA) in accordance with Northern Beaches's Civil Engineering requirements, AUS-SPEC Specifications and Austroads (2012) Guide to Pavement Technology Part 2 Pavement Structural Design. A CBR value, adopted for the preliminary design, was estimated using limited lab and field test results.

6.2 Design Parameters

An ESA value of $3x10^5$ was adopted for design of the proposed new entry / exit to the site.

Two bulk soil samples were collected for CBR testing (Figure 2, Attachment A). A laboratory test certificate is provided in Attachment G. Given the limited laboratory test results, DCP-CBR correlations were carried out using Austroads (2012). Considering the variation in DCP 'N' counts, resulting from variable soil consistency, the potential variation in soil moisture conditions as well as the likely variable cut and fill requirements across the site, we have adopted a CBR value of 4 % for preliminary design purposes.

Subgrade improvement / replacement will likely be required where material of inferior quality is uncovered during excavation (i.e. CBR < 4 %). Alternatively, lower CBR values may be applicable and pavement material thickness may need to be revised. If material of superior quality is uncovered during excavation, higher CBR values may be applicable and pavement material thickness may be revised, subject to verification during construction by a geotechnical engineer and further on-site / laboratory testing.

6.3 Pavement Thickness

Table 17 presents recommended pavement types and material thicknesses for the proposed road.

Road Type	Total Thickne ss (mm)	Layer	Thickness (mm)	Materials
Access Street	440	Wearing Course	50	Primer + 10 mm one coat flush seal + 40 mm Asphalt Concrete (AC10) ¹
		Base	150 ¹	DGB20
		Sub-base	240 1	CSS40 or DGS40

Table 17: Preliminary pavement material thickness design for CBR 4 %.

<u>Notes:</u>

¹ Based on Austroads (2012) guideline.

6.4 Earthworks

6.4.1 Subgrade Preparation

The subgrade is to be trimmed and compacted, following the removal of topsoil and other unsuitable materials such as root containing soils or uncontrolled fill, with density testing of the upper 300 mm layer at a rate of 1 test per 50 m of road length. Minimum relative density of subgrade shall be 100 % Maximum Dry Density (MDD) at a standard compactive effort within 2 % of optimum moisture content (OMC). Prior to placement of pavement material, the subgrade shall be proof rolled and approved by a geotechnical engineer. If soft spots are encountered, they can be treated by one of the following methods subject to final design:

- Removal and replacement with approved fill under geotechnical engineer's direction.
- In-situ stabilisation with cement / lime or similar binding agent to a depth of at least 300 mm below finished level. Use of this method and extent will depend on the condition of material to be stabilised.
- 6.4.2 Subsoil Drainage

Surface and sub-soil drainage is to be provided in accordance with Council requirements and relevant standards. Typically, subsurface drains are installed on the upslope side, as a minimum, of all internal roads and generally extend at least 600 mm below pavement level.

6.4.3 Placement and Testing of Pavement Material

Pavement materials shall be placed in layers (when compacted) not thicker than 200 mm or less than 100 mm. Pavement materials shall be compacted to the following condition:

- Sub-base Minimum 98 % MDD at modified compactive effort (±2% OMC).
- $\circ~$ Base Minimum 98% MDD at modified compactive effort (±2% OMC).

Compaction testing shall be undertaken by a NATA accredited laboratory in accordance with procedures as outlined in AS1289, and at a rate of no less than 1 per 50 linear metres, or per 250 m², whichever is the greater, with a minimum of 2 tests in any one length. Each pavement layer shall be proof rolled under Geotechnical Engineers' supervision. Subsequent pavement layers shall not be placed prior to approval of underlying layer by the Geotechnical Engineer.

6.4.4 Fill Placement

Should filling be required to raise subgrade levels, the use of site-won excavated residual soils may be considered, subject to implementing stringent moisture conditioning and compaction controls, or mixing with lime to assist placement of medium to high plasticity clay, and testing. Alternatively, suitable granular fill, approved for use by a Geotechnical Engineer may be adopted. All earthworks specification is to be prepared by the supervising engineer and be implemented by the contractor.

6.4.5 Other Considerations

Transitioning of existing and new pavement sections needs to be included in detailed design. The transition zone is to be keyed and adequately offset from wheel paths.

7 Further Assessments and Monitoring / Inspections

7.1 Further Works

We recommend the following additional geotechnical assessments are carried out to develop the final design:

- 1. Detailed design of any shoring / retaining/ foundation structures.
- 2. Supplementary investigations, including rock coring, particularly in the southern and south western portions of the site, to better understand the potential risks associated with sheared / fractured rock across the site.
- 3. Installation of inclinometers upslope of proposed excavations for the proposed development to measure ground movements and identify deflections in the support structures to manage risks associated with potential ground movements.
- 4. Review of the final design and construction staging plan by a senior geotechnical engineer to confirm adequate consideration of the geotechnical risks and adoption of the recommendations provided in this report.

7.2 Construction Monitoring and Inspections

We recommend the following is inspected and monitored during construction phase of the project (Table 18).

Scope of Works	Frequency/Duration	Who to Complete
Inspect excavation retention (shoring, retaining wall, anchor, rock bolt) installations and monitor associated performance to assess need for additional support requirements.	Daily / As required ²	Builder / MA 1
Monitor groundwater seepage from excavation faces, if encountered, to assess stability of exposed materials and need for additional drainage requirements.	When encountered	Builder / MA 1
Monitor excavation-induced ground settlement and lateral deflection of retained materials along south western and southern site boundaries, with the aid of inclinometers.	Daily at on-set of excavation and as agreed thereafter	MA 1
Monitor and analyse ground movements and retaining wall deflections using inclinometers	As required	MA ¹
Inspect exposed material at foundation / subgrade level to verify suitability as foundation / lateral support /	Prior to reinforcement set-up and concrete	MA ¹

 Table 18: Recommended inspection / monitoring requirements during site works.

Geotechnical and Acid Sulfate Soils Assessment:

Proposed Seniors Living Development, Cabbage Tree Road, Bayview, NSW P1706099JR02V03 – August 2018

Scope of Works	Frequency/Duration	Who to Complete
subgrade.	placement	
Monitor sedimentation downslope of excavated areas.	During and after rainfall events	Builder
Monitor sediment and erosion control structures to assess adequacy and for removal of built up spoil.	After rainfall events	Builder

<u>Notes:</u>

¹ MA = Martens and Associates engineer

² MA inspection frequency to be determined based on initial inspection findings in line with construction program.

8 References

- Australian Geomechanics Society (2007) Practice Note Guidelines For Landslide Risk Management 2007, Journal and News of the Australian Geomechanics Society Volume 42 No 1 March 2007.
- Australian Standard 1289.6.3.2 (1997) Determination of the penetration resistance of a soil 9kg dynamic cone penetrometer test.
- Australian Standard 1726 (2017) Geotechnical site investigations.
- Australian Standards 2159 (2009) Piling-Design and Installation.
- Australian Standard 2870 (2011) Residential slabs and footings.
- Australian Standard 3798 (2007) Guidelines on earthworks for commercial and residential developments.
- Bertuzzi, R. and Pells, P. J. N. (2002) Geotechnical parameters of Sydney sandstone and shale, Australian Geomechanics, Vol. 37, No 5, pp 41-54.
- Bee and Lethbridge Surveying Plan (2014), Drawing No. 18990, dated April 2014 (Bee and Lethbridge, 2014).

Department of Land and Water Conservation (DLWC, 2002), Site Investigations for Urban Salinity.

- Herbert C. (1983) Sydney 1:100 000 Geological Sheet 9130, 1st edition, Geological Survey of New South Wales, Sydney.
- Marchese Partners International Pty Ltd (2018) Job No. 14023, Drawing Nos. DA1.02, DA1.04, DA2.01 to DA07, DA2.21 to DA2.43, DA3.01 to DA3.08 and DA4.01 to DA4.04, dated June 2017, Drawing Nos. LEC2.01 to LEC2.06, LEC3.01, LEC3.03 to LEC3.05 and LEC5.23 dated August 2018 (Marchese Partners, 2018).
- Northern Beaches Council (2015) Development Control Plan, Amendment 19.
- NSW Department of Primary Industries Water (DPIW) real time groundwater bore database.

Pittwater Local Environmental Plan (2014) Geotechnical Hazard Map – Sheet GTH_011.

Safe Work Australia (2015) Code of Practice 'Excavation Work'.

Soil Conservation Service of NSW (1983), Sydney Australia 1:100,000 Soil Landscape Series Sheet 9130.

9 Attachment A – Figures

martens-

	ens
	lart
*****	<u>۲</u>
and the second second	

1

	MARTENS & ASSOCIATES P/L		
	PROJECT: P1706099		
BOREHOLE: BH302	DEPTH: 2.8 m – 12 m	DATE: 20/09/2017	
6099 BH302. START 2.9	BM AL A		
3		A CONTRACTOR OF THE OWNER	
4			
5		1 m m HB	
6		AH6 -	
7 1000	Letter and the second second	A CARLER AND A CARL	
8	AIR for the former of the second seco		
9 MILLION F	A AND	A A A A A A A A A A A A A A A A A A A	
10	600 00 THE 1 THE		
11 To the second street of style			
ин ни и и и и и и и и и и и и и и и и и	्राज्य का श्राह्ण का श्राह्ण 200 स. ज. ज. का का 500 स. ज. ज. का का 500 स. ज. ज. का स.	⁷ # # 700 # 7 # 4 % # 7 # # 800 # 7 # # 800 # 7 # # 800 # 7 # # 7 # # 7 # # 500 # 7 # # # # # 500	
& Associates Pty Ltd ABN 85 070 240 890	Environment Water	Wastewater Geotechnical Civil Management	
HN	PHOTO OF ROCK CC	DRE – BH302 Drawing:	
RE 27.09.2018	Proposed Seniors Living Development, Ca	bbage Iree Road, Bayview, NSW	FIGUI
27.00.2010		File No: P170	4000 1000

	Μ	ARTENS & ASSOCIATES P/L		
		PROJECT: P1706099		V 2
				٩
B	OREHOLE: BH305	DEPTH: 2.8 m – 15.0 m	DAIE: 20/09/2017	
600	79. BH305 START	20/4/17. 2.8m		Ê
3	A Start Cont		The second	
4 0	the second			
5		A		
6		The Mark 19 19	bornni No Relay	
The states	300mm Nb Recovery	The sector		
8	A DRUZE		No reary	
9	1.0m NO RE	LONERY	No. 1 Contraction	
10	300mm No Recorder #			
D. D. A.	har A it		NO Recovery	
12	and the second	No Recove	ing	
	No Recovery	A A A A	Barnet Barnette al.	
14				
T_F	- O.H. 15m			
Martens & Associatos Phy Itd	E 070 240 900	Environmant Wat	, Eatropy and a solution of the solution of th	anagoment
Drawn:	HN		CORF - BH305	Drawing:
Approved:	RE	Proposed Seniors Living Development,	Cabbage Tree Road, Bayview, NSW	FIGURE 7
Date:	27.08.2018	4		File No: P1704000 (P02)/02
scale:	INA			FILE IND. F1/U0U77JKUZVU3

10 Attachment B – Borehole and Monitoring Well Logs

CL	IEN ⁻	Т	P	Ianix Projects COMMENCED 20.05.14 COMPLETED 20.05.14 REF BH101 Sectorshpical/Acid Sulphate Soils Assessment LOGGED AB CHECKED GT Such Acid Acid Acid												01		
PR	OJE	СТ	G	eotechr	nical/A	cid Sulph	ate	Soils Assessment	LOGGED	AB	CHECKED	(GT			Sheet 1	of 1	
EQU		NT		abbage	Hydraulic	коаа, вау	viev	W, NSW	GEOLOGY	-	VEGETAT RL SURFA		6mAHD			PROJECT	NO. P1404179	
EXC	AVAT		DIMEN	SIONS	Ø100mm	X 6.2m depth			NORTHING	-	ASPECT	:	South East			SLOPE	10-15%	
	EX		/AT		TA		7	MAT	ERIAL DAT	A				SA	MPLIN	G & TES	TING	
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)		GRAPHIC LOG	CLASSIFICATION	DESCRIPT Soil type, texture, structure, mot particle characteristics, organi fill, conta	ttling, colour, plast cs, secondary and amination, odour.	TA icity, rocks, oxidation, d minor components,	CONSISTENCY	DENSITY INDEX	ТҮРЕ	DEPTH (M)	A	RES DDITIONA	ULTS AND L OBSERVAT	IONS
	NII	N	M	-			OL	Organic SILT - Lo organic	w plasticity, or s, with sand.	dark brown,						- F - Fl	ILL	
	Nil	N	м	0.5			CL	Sandy CLAY - Light b	prown/brown,	low to medium			A	0.5	4179/10	1/ 0.5		
v	Nil	N	м	- - 1.0 - - - - -			СІ	CLAY - Medium plast red/ora	icity, brown w	vith light brown,			A	1.0	4179/10 4179/10	1/ 1.0	_	- - - 1 <u>.0</u> - - - - - -
				- <u>2.</u> 0 -									A	2.0	4179/10	1/ 2.0		_ 2 <u>.0</u> _
⊢			-	2.3				<u> </u>					A	2.5	4179/10	1/ 2.5 - Fl	ILL	
v	Nil	N	м	- - - <u>3.0</u>			CL	CLAY - Medium p yellow, trace gr	blasticity, bro avels (2-30m	wn/orange, nm, 5%).								- - - 3 <u>.0</u> -
v	Nil	N 5.0	м	4.0 			СН	Silty CLAY - High pl minc	asticity, black	<, dark brown,	F- St		A A A	3.5 4.0 4.5	4179/10 4179/10 4179/10	1/ 3.5 1/ 4.0 1/ 4.5		
		Y Y	w	5.8									A	5.5	4179/10	1/ 5.5		5 <u>.0</u>
v	Nil	Y	w	<u>6.0</u>		, P 9, 1, P		SANDSTONE - Infer red/brown, fine to medium	red extremely n grained, ext	y low strength, remely weathered.			A	6.0	4179/10	1/ 6.0	Dit refue al at 6 2r	6 <u>.0</u>
Ш Z X В Н S C	QUIPI NE E A Hap C Co	MENT atural l xisting ckhoe nd au nade ncrete	- / ME expose expose buck ger	6.2	JPPORT 4 Shoring 2 Shotere 3 Rock Bd No supp	WATER N None tet X Not r oolts ¥ Water port √ Water	e obse neasu er leve	Woisture Penetra Moisture Penetra rved D D Dry L rved Moist M Moist M M vet H H W Wet H WP Plastic limit R Tow W1 Liquid limit	ATION CONSIS VS Ve vs vs v	STENCY DENSITY ary Soft VL Very Loos oft L Loose m MD Medium D D Dense ary Stiff VD Very Dens ard	SAM se A A Pense U L D E Pe M N UX T	PLING uger s ulk sau ndistu bisturbun ube sa	* & TESTIN ample mple sample e content mmple (x mm)	pp s sv D	 Pocket p Standard S Vane shu CP Dynam penetrc D Field der 	- V enetrometer penetration to aar ic cone meter sisity	CLASSIFI SYMBOLS est SOIL DES N Agri	n
V T P	V-E C Tur T <u>P</u> u	Bit ngsten <u>sh tu</u> b	Carb e	ide Bit		→ Wate	er inflo	w	F Fri	able				W	S Water sa	ample		
		n	a	rte	NS	EXCAVATIO	DN L	DG TO BE READ IN CONJUN M Phor mail@mart	CTION WITH A IARTENS & AS 6/37 Le Hornsby, NS ne: (02) 9476 99 tens.com.au W	CCOMPANYING REPO SSOCIATES PTY LTD eighton Place SW 2077 Australia 999 Fax: (02) 9476 876 EB: http://www.martens	ORT NOTE	S AN	D ABBRE	ng	ons gine Bo	ering	g Log ole	-

С	IEN	Т	P	anix Pr	oject	S			COMMENCED	20.05.14	COMPLET	ETED 20.05.14 REF BH102								
PF	ROJE TE	ЕСТ	G	eotechr abbage	nical/ Tree	Acid Sulph Road, Bay	ate viev	Soils Assessment		AB Hawkesbury Sandstone			GT Grass			Sheet	1 of	1 21404179		
EQ	UIPME	NT			Hydra	ulic Auger		.,	EASTING	-	RL SURFA	ACE	9mAHD					1404113		
EX					Ø100n	nm X 2.5m depth		мат		-	ASPECT	:	South East					-15%		
⊢						ш о	z	MAI	ERIAL DAI	Α	>	×	:	54		GœI	ESTING	2		
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)			CLASSIFICATIO	DESCRIPT Soil type, texture, structure, mol particle characteristics, organi fill, conte	tlion OF STRA ttling, colour, plast cs, secondary and amination, odour.	TA icity, rocks, oxidation, d minor components,	CONSISTENC	DENSITY INDE	ТҮРЕ	DEPTH (M)	А	R DDITIO	ESULTS NAL OBS	AND ERVATIONS	;	
v	Nil	N	М	- 0.3			sc	Clayey SAND - F brown	ine to mediu /dark brown.	m grained,		L					- TOPSOIL	-	_	
v	Nil	N	м	 0.8		 	СІ	CLAY - Medium plast	icity, with sar	nd, dark brown.	F		A	0.5	4179/10	2/ 0.5	- RESIDUA	AL	-	
v	Nil	N	м	1.0 - - -			sc	Sandy CLAY - Lo	ow plasticity,	dark grey.	F- St		A	1.0	4179/10	2/ 1.0	- RESIDUA	AL	1 <u>.0</u> - - -	
v	Nil	N	м	1.6 				SANDSTONE - Infer red/brown, ex	red extremely weat	/ low strength, hered.				2.0	4179/10	2/20	- V Bit refu	sal at 2.0m.		
тс	Nil	N	м			· · · · · · · · · · · · · · · · · · ·	-	SANDSTONE - Inferred extremely to	, very low stre highly weath	ength, grey/white, nered.										
Ic N N N N SANDSTONE - Inferred, very low strength, grey/white, extremely to highly westhered. Ic N																				
		/				EXCAVATI	ON L	OG TO BE READ IN CONJUN	CTION WITH A	ACCOMPANYING REP	ORT NOT	ES AN	ID ABBRE		ONS	-				
		m	a	rte	ns	S		Phor mail@mart	6/37 Le Hornsby, NS ne: (02) 9476 99 tens.com.au W	eighton Place SW 2077 Australia 999 Fax: (02) 9476 876 EB: http://www.martens	67 s.com.au		E	ng	nne Bc	erii orel	ng L hole	.og -		

С	LIEN	IТ		Planix Pr	ojec	ts				COMMENCED	20.05.14	COMPLE	TED	20.05.14			REF	BH103	
Ρ	ROJ	EC.	Т	Geotech	nical	/Ac	id Sulph	ate	Soils Assessment	LOGGED	АВ	CHECKE	D	GT			Sheet 1	of 1	
s	ITE			Cabbage	Tree	e R	oad, Bay	viev	w, NSW	GEOLOGY	Hawkesbury Sandston	ne VEGETA	TION	Grass			PROJECT NO	P1404179	
E				ENSIONS	Hydra	aulic	Auger				-	RL SURF	ACE	20mAHD			SLOPE	10-15%	
f	E				TA	///////	X 2.511 depth		MAT		- [A	ASPECT		SouthEas	S		G & TEST	ING	
METHOD	SUPPORT	WATER		DEPTH (M)			GRAPHIC LOG	CLASSIFICATION	DESCRIP1 Soil type, texture, structure, mo particle characteristics, organ fill, cont	TION OF STRA ttling, colour, plast ics, secondary and amination, odour.	TA icity, rocks, oxidation, d minor components,	CONSISTENCY			DEPTH (M)	A	RESUI DDITIONAL (TS AND DBSERVATIONS	
v	Ni	N	1 1	1 - 0.4				SM	Silty SAND - Fine to r	nedium grain	ed, dark brown.			L			- TOP	SOIL	-
v	Nil	N	N N	1 - 0.8				CL	CLAY - Low to medium	plasticity, lig ith sand.	ht brown/orange,	F- St		A	0.5	4179/10	3/ 0.5 - RES	IDUAL	
v	' Nil	Ν	J N	1.0 				-	SANDSTONE - Infer red/brown, ex	red extremely ktremely wea	y low strength, hered.			A	1.0	4179/10 4179/10	3/ 1.0 3/ 1.5 - V Bi	t refusal at 1.8m.	1 <u>.0</u> - - - - -
т		N	1 1	2.0 1 2.5					SANDSTONE - Inferrec extremely to	l very low stre highly weath	ength, grey/white, hered.								2 <u>.0</u> - - -
	Borehole terminated at 2.5m on inferred very low strength sandstone.													3.0					
				4.0 - - - - - - 5.0 - - - - -															4.0
				- - - - - - - - - - - - - - - - - - -															
				7.0 - - - - - - - - - - - - - - - - - - -															7.0
	EQUII N I BH E HA F S S CC C V V TC T PT F	PMEN Natura Existi Backh land a Spade oncre -Bit ungste Push te	NT / M al exp ing exi ioe bu auger e ete Cc tube	IETHOD SI JSURE SI JS	UPPOF H Sho C Sho B Roc il No s	RT orring otcrete ok Bo suppo	WATER N None e X Notr ints ¥ Wate ort	e obse measu er leve er outf er inflc	MOISTURE PENETR rrved D Dry L Low red M Moist M Mod W Wet H High Wp Plastic limit R Refu low WI Liquid limit	ATION CONSI VS V erate S S F Fi Stal St St VSt V H H F Fri	STENCY DENSITY ery Soft VL Very oft L Loos mm MD Medi iff D Dens ery Stiff VD Very [ard able	SA Loose A e B Im Dense U Dense M Ux	MPLIN Auger Bulk s Undist Distur Moistu Tube s	G & TESTI sample ample urbed sample bed sample ire content sample (x m	NG p S ble V D m) F V	p Pocket p Standard S Vane shu OCP Dynam penetrc D Field der VS Water sa	enetrometer penetration test aar ic cone mmeter sity imple	CLASSIFICATIO SYMBOLS AND SOIL DESCRIPT Y USCS N Agricultura	9.0 N ION
	(m	18	rte	n	S		<u>ON LO</u>	DG TO BE READ IN CONJUN M Phoi mail@mar	CTION WITH A MARTENS & AS 6/37 Le Hornsby, N ne: (02) 9476 9 tens.com.au W	ACCOMPANYING R SSOCIATES PTY L1 eighton Place SW 2077 Australia 999 Fax: (02) 9476 EB: http://www.mar	EPORT NOT	TES A		EVIATI	gine Ba	ering oreho	Log - le	

СГ	IEN [.]	г	P	anix Pr	oject	ts				COMMENCED	20.05.14	COMPLET	ED	20.05.14			REF	BH10)4
PR	OJE	СТ	G	eotechr	nical/	/Aci	d Sulph	ate	Soils Assessment	LOGGED	AB	CHECKED		GT		_	Sheet 1	of 1	
SI	E		C	abbage	Tree	Ro	ad, Bay	viev	w, NSW	GEOLOGY	Hawkesbury Sandstone	VEGETAT		Grass			PROJECT N	IO. P1404179	
EQU	AVAT		DIMEN	SIONS	Ø100r	mm X	2.4m depth			NORTHING	-	ASPECT	CE	South East			SLOPE	10-15%	
	ΕX	CA	VAT	ION DA	TA				MAT	ERIAL DAT	A				S	MPLIN	G & TES	TING	
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)			GRAPHIC LOG	CLASSIFICATION	DESCRIPT Soil type, texture, structure, mot particle characteristics, organi fill, conte	ION OF STRA tling, colour, plast cs, secondary and amination, odour.	FA icity, rocks, oxidation, I minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH (M)	A	RESI DDITIONAI	ULTS AND L OBSERVATIO	DNS
v	Nil	N	м	-			× × × × × × < × ×	SM	Silty SAND - Fine to n	nedium grain	ed, dark brown.		L				- TC	OPSOIL	
v	Nil	N	м					CL	CLAY - Low to medium	plasticity, lig	ht brown/orange,	F-		A	0.5	4179/10	4/ 0.5 - RE	ESIDUAL	
			<u> </u>	<u>1.0</u> 1.1					wi Grading	ith sand. to dark brow	n.	51		A	1.0	4179/10	4/ 1.0		1 <u>.0</u>
v	Nil	N	D	- - - - - - - - - - - - - - - -					SANDSTONE - Infer red/brown, ex	red extremel tremely weat	/ low strength, hered.			A	1.5	4179/10	4/ 1.5 - V	Bit refusal at 2.4m	- - - - 2 <u>.0</u> - - - - -
			+	2.4 			<u>, ```</u>		Borehole termina very low str	ted at 2.4m or ength sands	on inferred						- v	Dit felusar at 2.411.	
															- 3 <u>.0</u> -				
														-					
															- - 4.0				
				- - -															- - -
				- - -															-
				<u>5.0</u> 															5 <u>.0</u> - -
				- - -															-
				<u>6.</u> 0 															- 6 <u>.0</u> -
				- - -															-
				- <u>7.</u> 0 -															- 7 <u>.0</u> -
				_ _ _															
				8.0															- - 8.0
																			-
																			-
E N H S O V T F	QUIPI Na H Ba A Ha Sp C Co V-E C Tur T Pu	VENT atural of xisting ickhoe ind au bade ncrete Bit ngster ish tub	/ ME exposi- g excar- g excar-	<u>명</u> .0 THOD SL ure SH vation SC et RE Nil r de Bit	JPPOR Shor Shot No s	T ring tcrete k Bolts suppor	WATER N Non X Not ₩ Wat Wat	e obse measu er leve er outf er inflc	MOISTURE PENETR erved D Dry L Low red M Moist M Mode el W Wet H High Wp Plastic limit R Refus low WI Liquid limit	ATION CONSI: VS V erate S S F Fi sal St St VSt V H Ha F Fri	STENCY DENSITY ry Soft VL Very Loo oft L Loose rm MD Medium E MD Dense ry Stiff VD Very Dens rd	SAM se A A Dense U U D I se M N Ux T	PLINC Auger s Bulk sa Jndistu Disturb Toisturb Tube si	S & TESTIN sample imple urbed sample re content ample (x mi	NG p S le V D m) F V	p Pocket p Standard S Vane shu DCP Dynam penetro D Field der VS Water sa	enetrometer penetration te aar ic cone meter isity ample	CLASSIFIC SYMBOLS SOIL DESC Y USCS N Agric	9.0 ATION AND RIPTION S ultural
		n n	a	rte	ns	E 5		ON LO	DG TO BE READ IN CONJUN M Phor mail@mart	CTION WITH A IARTENS & AS 6/37 Le Hornsby, N ne: (02) 9476 9 ens.com.au W	CCOMPANYING REP SOCIATES PTY LTD eighton Place SW 2077 Australia 399 Fax: (02) 9476 876 EB: http://www.martens	ORT NOTE	S AN		EVIATI	ons gine Ba	ering	g Log ble	-

СГ	IEN	Г	P	anix Pr	ojec	cts				COMMENCED	20.05.14	COMPLET	ED	20.05.14			REF	BH1	05
PR		СТ	G	eotechr	nica Tre	I/Ac	id Sulph	ate	Soils Assessment		AB Hawkesbury Sandstone			GT			Sheet 1	of 1	
EQU	JIPME	ΝТ		abbage	Hydr	raulic	Auger	VICV	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	EASTING	-	RL SURFA		23mAHD			PROJECT	NO. P1404178	9
EXC			DIMEN	SIONS	Ø10	0mm 2	X 2.5m depth			NORTHING	-	ASPECT		South Eas	st		SLOPE	10-15%	
-	EX		/AT	ION DA				z	MAT	ERIAL DAT	Ά			_	S		IG & TES	STING	
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)			GRAPHIC LOG	CLASSIFICATIO	DESCRIPT Soil type, texture, structure, moi particle characteristics, organi fill, conte	TION OF STRA ttling, colour, plast cs, secondary and amination, odour.	FA icity, rocks, oxidation, I minor components,	CONSISTENCY			DEPTH (M)			SULTS AND AL OBSERVAT	TONS
V	Nil	N	D	0.2			× × × ×	SM	Silty SAND - Fine to n	nedium grain	ed, dark brown.		1	<u> </u>			- 1	FOPSOIL	-
				_ _ _				-						ļ	A 0.5	4179/1	- F 05/ 0.5	RESIDUAL	
v	Nil	N	м	 				CL	CLAY - Low to medium w	plasticity, lig ith sand.	ht brown/orange,	F- St		ļ	A 1.0	4179/10	05/ 1.0		- - 1 <u>.0</u> - -
				1.5		++	P								A 1.5	4179/1)5/ 1.5 - \	/ Bit refusal at 1.5	m
тс	Nil	N	м	 2.5					SANDSTONE - Infer red/brown, ex	red extremely tremely weat	/ low strength, hered.								- 2.0 - - -
				-					Borehole termina very low str	ated at 2.5m o ength sands	on inferred tone.								-
																<u>3.0</u> - -			
																-			
																4.0 -			
				- - -															-
				_ _ <u>5.</u> 0															- - 5 <u>.0</u>
				- - -															-
				-															-
				<u>6.</u> 0 															6 <u>.0</u> -
				- - -															-
																			- 7 <u>.0</u> -
				- - -															-
																			-
				8.0 															8.0 -
				- - -															-
																			-
ENX	QUIPI Na	MENT atural e	/ ME expos	re S⊦ Lire S⊦ Lire S⊦	JPPO I Shi	RT oring	WATER N Non	e obse	MOISTURE PENETR rved D Dry L Low red M Moist M Mode	ATION CONSI VS Ve	STENCY DENSITY ery Soft VL Very Loo oft L Loose	SAN se A A	IPLIN Auger Bulk se	G & TEST sample ample	ING	p Pocket p	enetrometer	CLASSIF SYMBOL	UCATION S AND SCRIPTION
H S C V T	H Ba IA Ha C Co V-E C Tur	ckhoe ind au ade ncrete Bit igsten	ger Core Carbi	et RE Nil r de Bit	3 Ro I No	ck Bo supp	Its ⊉ Wat ort → Wat → Wat	er leve er outf er inflo	i W Wet H High Wp Plastic limit R Refus low WI Liquid limit	sal St St VSt Ve H Ha F Fri	MD Medium E ff D Dense rry Stiff VD Very Dens rrd able	Dense U I D I se M M Ux T	Undist Disturt Moistu Tube s	urbed sam bed sample re content sample (x n	ple \ e [nm) F	/S Vane sh DCP Dynan penetr FD Field de WS Water s	ear nic cone ometer nsity ample	Y US N Ag	CS
<u>⊢</u> ⊧	T Pu	sh tub	e				EXCAVATIO	ON LO				ORT NOTE	ES AI	ND ABBF	REVIAT	IONS			
		n	a	rte	n	S			Phor	IARTENS & AS 6/37 Le Hornsby, N ne: (02) 9476 9	SOCIATES PTY LTD eighton Place SW 2077 Australia 999 Fax: (02) 9476 876	67			Eng	gine	erin	g Log	-
	-	C) Cor	ovriaht	Martens & Ass	sociate	s Ptv. I	Ltd. 2014		mail@marl	ens.com.au W	EB: http://www.martens	s.com.au	1			DO	леп	uie	

	ENT	г СТ	P	lanix Pr eotechi	ojec	ts /Aci	id Sulph	ate	Soils Assessment		20.05.14 AB	COMPLET	ED 2	0.05.14 T			RE	F	BH10	6
SITE	E		C	abbage	Tree	Rc	oad, Bay	viev	w, NSW	GEOLOGY	Hawkesbury Sandstone	VEGETATI	ON G	Grass			PROJE	CT NO.	P1404179	
EQUIF	MEN	NT			Hydra	aulic A	luger			EASTING	-	RL SURFA	CE 2	2mAHD						
EXCA					Ø100 TA	mm X	2.5m depth		МАТ	ERIAL DAT	- A	ASPECT	S	outh East	SA	MPLIN	SLOPE		0-15% G	
METHOD	SUPPORT	WATER	MOISTURE	DEPTH(M)			GRAPHIC LOG	CLASSIFICATION	DESCRIPT Soil type, texture, structure, mot particle characteristics, organi fill, conte	ION OF STRA' tling, colour, plast cs, secondary and amination, odour.	FA icity, rocks, oxidation, minor components,	CONSISTENCY	DENSITY INDEX	ТҮРЕ	DEPTH (M)	Α	R DDITIO	ESULTS	S AND SERVATION	s
v	Nil	N	м	-				SM	Silty SAND - Fine to n	nedium grain	ed, dark brown.		L	A	0.5	4179/10	6/ 0.5	- TOPSO	ιL	
V	Nii	N	м	0.6			× × ×		CLAY - Low to medium	plasticity, lig	ht brown/orange,			A	0.75	4179/10	6/ 0.75	- RESIDU	JAL	
v	Nil	N	D	0.9 <u>1.0</u> 1.1			 [~ }/		wi SANDSTONE - Infer	ith sand. red extremely	low strength,			A	1.0	4179/10	6/ 1.0	- V Bit ref	fusal at 1.1m.	<u>1.0</u>
тс	Nil	N	D						SANDSTONE - Inferred extremely to	very low stre highly weath	hered. ength, grey/white, ered.			A	1.5	4179/10 4179/10	6/ 1.5 6/ 2.0			- - - - - - - - - - - - - - - - - - -
				2.5 - - - - - - - - - - - - -					Borehole termina very low str	ted at 2.5m o	on inferred one.									3.0 3.0 4.0 5.0 5.0 1.1 1.0 5.0 1.1 1.0 6.0 1.1 1.0 6.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
EQ N X BHHAS CCC V TC TC PT	UIPM Na Ex Baau Hang Corr V-B Tunn Pus	MENT tural e isting cckhoe ncrete it gsten sh tub	T/ME expos ger a Core a Core	THOD Sture Start THOD Sture Start Ni	JPPOR 4 Sho 3 Roc 1 No s	RT ring tcrete k Bolt suppo	WATER N Non s ¥ Wat → Wat → Wat	e obse meass er leve er outt er inflo	MOISTURE PENETR. srved D Dry L Low red M Moist M Mode el W Wet H High Wp Plastic limit R Refus low WI Liquid limit DOG TO BE READ IN CONJUNI N	ATION CONSI VS Ve erate S S F Fi VSt Ve H Ha F Fri CTION WITH A HARTENS & AS 6/37 Le Hornsby, NS	STENCY DENSITY ry Soft VL Very Loo fm MD Medium D ff D Dense rd able CCOMPANYING REP SOCIATES PTY LTD ighton Place W 2077 Australia D0 For: (20) 0476 270	SAM Se A A Bense U L Se M M Ux T ORT NOTE	PLING uger sa ndisturl isturbe ube sar S ANI	& TESTING ample bed sample content mple (x mm) D ABBRE		 Pocket p Standard S Vane sh CP Dynam penetro Field der S Water sa DNS 	enetromet penetrati- aar lic cone sity imple	er on test	CLASSIFICAT SYMBOLS AN SOIL DESCRI Y USCS N Agricultu	- 7.0 - - - - - - - - - - - - - - - - - - -

CL	IEN	r	P	anix Pr	ojec	cts				COMMENCED	20.05.14	COMPLET	ED	20.05.14			REF	BH	107
PR	OJE	СТ	G	eotechr	nica	l/Ac	id Sulph:	ate	Soils Assessment	LOGGED	AB	CHECKED		GT		_	Sheet 1	of 1	
SIT	E		C	abbage	Tre	e R	oad, Bay	viev	w, NSW	GEOLOGY	Hawkesbury Sandstone			Grass			PROJECT N	IO . P1404	179
EQU			DIMEN	SIONS	Ø10	Omm)	X 5.5m depth			NORTHING	-	ASPECT	CE	South East			SLOPE	5-10%	
	EX	CAV	/AT	ION DA	ΤA			_	МАТ	ERIAL DAT	A				SA	MPLIN	G & TES	TING	
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)			GRAPHIC LOG	CLASSIFICATION	DESCRIPT Soil type, texture, structure, mo particle characteristics, organi fill, cont	TION OF STRAT ttling, colour, plast ics, secondary and amination, odour.	A city, rocks, oxidation, minor components,	CONSISTENCY		TYPE	DEPTH (M)	A	RESI DDITIONAL	ULTS AND L OBSERV	ATIONS
v	Nil	N	D	-				SP	SAND - Mediu dark b	im to coarse g rown,uniform	grained,		L				- T(OPSOIL	-
				_										A	0.5	4179/10	7/ 0.5 - Fli	LL	-
v	Nil	N	D	 				CL	CLAY - Low t red/or	o medium pla ange/brown.	asticity,	F- St		A	1.0	4179/10	7/ 1.0		- - 1 <u>.0</u> - - -
				1.5			× × ×							A	1.5	4179/10	7/ 1.5 - Fli	LL	
				- 2.0 - - - - - 3.0										A	2.0	4179/10	7/ 2.0		- 2 <u>0</u> - - - - - - - - - - - - - - - - - - -
v	Nil	Ν	D					SM	Silty SAND - Fine to n	nedium grain	ed, dark brown.			A	3.5	4179/10	7/ 3.5		
				 										A	4.5 5.0	4179/10	7/ 4.5 7/ 5.0		
V	Nil	Ν	D	5.2				CL	CLAY - Low t light brown/	o medium pla orange, with	sticity,	St							_
V	Nil	N	D	5.5			· · · ·		SANDSTONE - Infer	red extremely	low strength,								-
E NX B H SC V T P	QUIP Net E: H B Be Sto C C T Fu	MENT tutral (¢ ixisting cckhoe ncrete sit sit sit sit	/ ME sxpos exca ger c Core e c Core	3.3 	JPPO 1 Shiha 3 Roo 1 No	RT oring otcrete ck Boo suppo	WATER N Non e X Noti its ⊻ Wat ort ↓ Wat EXCAVATIO	e obsc measu er levr er out er out	red/brown, exp Refusal at 5.5m Iow stren Iow stren MOISTURE PENETR Prived D Dry L Low red M Moist Modi W Wet H High WP Plastic limit R Refue W Liquid limit SW OG TO BE READ IN CONJUN	ATION CONSIG and inferred e agth sandston VS Ve erate S Se vs Ve F Fri Sal St Sti VS Ve H Ha F Fri CTION WITH A	STENCY DENSITY e. STENCY DENSITY e. STENCY DENSITY ry Soft VL Vory Loo Soft VL Vory Loo MD Medium ff D Dense my Stiff VD Very Den rd able	SAM Dise A A Dense U L Dise M N UX T	PLIN(Auger) Judista Judista Voistur Ube s	G & TESTIN sample urbed sample urbed sample re content ample (x mm	G pr S V D FI W	 Pocket pi Standard Stane she CP Dynam penetrc Field der S Water sa 	netrometer penetration te ar c cone meter sity mple	CLAS SYME st SOLL Y	SIFICATION OLS AND DESCRIPTION USCS Agricultural
		/)						N CONSUL	MARTENS & AS	SOCIATES PTY LTD	5			n	vino	oring	~ / ~	a -
(ľ	n	a	rte	n	S	144 2014		Phor mail@mar	0/37 Le Hornsby, NS ne: (02) 9476 99 tens com au W	By 101 Place W 2077 Australia 999 Fax: (02) 9476 87 EB: http://www.marten	67 s.com.au		Ľ	<u>c</u>	Bo	reho	y LU ble	9 -

CL	EN	г	P	lanix Pr	ojects	6			COMMENCED	20.05.14	COMPLET	D 20	0.05.14			REF	BH	108
PR	OJE	СТ	G	eotechr	nical/A	Acid Sulph	ate	Soils Assessment	LOGGED	AB	CHECKED	G	т			Sheet 1	of 1	_
EQU		NT		abbage	Hydraul	коай, Бау lic Auger	vie	w, NSW	GEOLOGY	-	RL SURFA	DN G	4mAHD			PROJECT	NO. P1404	179
EXC	AVAT		IMEN	ISIONS	Ø100m	m X 5.5m depth			NORTHING	-	ASPECT	S	outh East			SLOPE	5-10%	
┝	EX			ION DA	TA z"		z	MAT	ERIAL DAT	Ά			_	SA	MPLIN	G & TES	STING	
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)		GRAPHIC LOG	CLASSIFICATIO	DESCRIPT Soil type, texture, structure, moi particle characteristics, organi fill, conta	TION OF STRA ttling, colour, plast cs, secondary and amination, odour.	FA icity, rocks, oxidation, I minor components,	CONSISTENCY	DENSITY INDE)	ТҮРЕ	DEPTH (M)	А	RES DDITIONA	ULTS AND	ATIONS
v	Nil	N	D	0.4			SM	Silty SAND - Fine to n	nedium grain	ed, dark brown.						- T	OPSOIL	-
v	Nil	N	D	0.6			CL	CLAY - Low to medium w	plasticity, lig ith sand.	ht brown/orange,	F- St		A	0.5 0.75	4179/10	8/ 0.5 - F 8/ 0.75 - F	ILL.	
V	Nil	N	D	0.9		P N		SANDSTONE - Infer	red extremely	/ low strength,						- V	' Bit refusal at	0.9m. –
тс	Nil	Ν	D	100 				SANDSTONE - Inferred extremely to	l very low stre highly weath	ength, grey/white, lered.			A A A	1.5 2.0 2.5 3.5	4179/10 4179/10 4179/10 4179/10	8/ 1.5 8/ 2.0 8/ 2.5 8/ 3.5		
тс	Nil	N	D	4.3 				SANDSTONE - Inferr fine to medium gr we	red low streng ained, highly eathered.	gth, red/brown, to medium			A	4.5	4179/10	8/ 4.5		- - - - - - - - - - - - - - - - - - -
EN	QUIPI	MENT	/ ME expos	- - - - - - - - - - - - - - - - - - -	JPPORT	WATER ng N Non	e obs	Borehole termina low stren MOISTURE PENETR	ted at 5.5m c igth sandstor	n inferred ie. STENCY DENSITY ary Soft VL Very Loo	SAMI se A A	PLING - Juger sa	& TESTINC	pp	Pocket p	enetrometer	CLAS SYME	
NX BH SC V T P	H Ba H Ba A Ha C Co V-E C Tur T Pu	isting ckhoe nd aug ade ncrete Bit igsten sh tub	exca buck ger Core Carb	vation SC et RE Nil r de Bit	3 Shotri Shotri 3 Rock I No su	rete X Noti Bolts 型 Wat ipport → Wat	er out	nved Moist Mod red M Moist M Mod el W Wet H High Wp Plastic limit R Refus Now WI Liquid limit	vs Ve erate S Si sal St Sti VSt Ve H Ha F Fri	ary solit VL Very Lose off L Losse rm MD Medium D ff D Dense rry Stiff VD Very Dens rd able	se A A B B Dense U U D D Se M M Ux T	uger sa ulk sam ndisturt isturbeo oisture ube sar	ple ped sample d sample content nple (x mm)	94 S D D F U W	Standard S Vane sha CP Dynam penetro D Field der S Water sa	penetration t penetration t ear ic cone ometer isity imple	SYME SOIL Y N	DESCRIPTION USCS Agricultural
⊢		_	~			EXCAVATIO	ON L	OG TO BE READ IN CONJUN			ORT NOTE	S AND) ABBRE	VIATIO	ONS			
(ľ	n	a	rte	ns	hy 1 tot 2014		™ Phor mail@mari	6/37 Le Hornsby, NS ne: (02) 9476 99 tens.com.au W	sighton Place SW 2077 Australia 999 Fax: (02) 9476 876 EB: http://www.martens	37 s.com.au		E	ng	ine Bc	erin oreh	g Lo ole	g -

CL	IEN	Г	P	anix Pr	ojec	ts				COMMENCED	20.05.14	COMPLET	ED	20.05.14			REF	BH	109
S		СТ	G	eotechr abbage	nical Tree	/ACI e Ro	ad, Bay	iate viev	Solls Assessment	GEOLOGY	AB Hawkesbury Sandstone	VEGETAT		GT Grass			Sheet 1 PROJECT	of 1 NO. P1404	179
EQU	JIPME	NT		0	Hydra	aulic A	uger		•	EASTING	-	RL SURFA	CE	14mAHD			ļ		
EXC					Ø100	mm X	2.5m depth		МАТ		- [A	ASPECT		South Eas	t S		SLOPE	10-15%	
						ш	0	z				~	2	{	- 3/		Gale	DING	
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)			GRAPHIC LOO	CLASSIFICATIO	DESCRIPT Soil type, texture, structure, moi particle characteristics, organi fill, conta	TION OF STRA ttling, colour, plas cs, secondary and amination, odour.	TA licity, rocks, oxidation, d minor components,	CONSISTENC			DEPTH (M)	A	RES DDITIONA	SULTS AND	ATIONS
v	Nil	N	м					SM	Silty SAND - Fine to n	nedium grain	ed, dark brown.			ļ	0.5	4179/10	- T 19/ 0.5	OPSOIL	
v	Nil	N	м	- - <u>1.0</u>			 	CL	CLAY - Low to medium w	plasticity, lig ith sand.	ht brown/orange,			ļ	× 1.0	4179/10	9/ 1.0		- - 1 <u>.0</u>
v	Nil	N	м	_ _ 1.5					SANDSTONE - Infer red/brown, ex	red extremely wear	y low strength, thered.			ŀ	1.5	4179/10	9/ 1.5		
тс	Nil	N	D	- - - - - - - - - - - - - - - - - - -				-	SANDSTONE - In grey/white, extrem	ferred very long to highly	ow strength, weathered.				2.5	4179/10	9/ 2.5		- - 2 <u>.0</u> - - -
				 <u>3.0</u>					Borehole termina very low str	ated at 2.5m o rength sands	on inferred tone.			,	. 2.0	4170710			- - - 3 <u>.0</u>
				- - - -															
				- - 4.0 -															4.0 -
				- - - -															-
				 															5 <u>.0</u>
				- - - -															- - - -
				<u>6.</u> 0 															6 <u>.0</u> - - -
				-															- - - 7 0
				 8.0															- - - 8.0
				- - - -															
E	QUIPI	MENT	/ ME	9.0 THOD SU			WATER		MOISTURE PENETR	ATION CONSI	STENCY DENSITY	SAM	PLIN	G & TESTI	NG			CLASS	
	H Ba IA Ha Sp C Co	aural e xisting ckhoe nd au ade ncrete	exposi exca buck ger Core	ure S⊦ vation SC et RE Nil	1 Sho C Sho 3 Roc I No 9	ring tcrete k Bolt suppo	N Non X Not s <u>▼</u> Wat rt - Wat	e obse measu er leve er out	erved D Dry L Low ured M Moist M Mode el W Wet H High Wp Plastic limit R Refus flow WI Liquid limit	vs v erate S S F Fi sal St St VSt V H Ha	ery Sott VL Very Loo oft L Loose rm MD Medium I iff D Dense ery Stiff VD Very Dens ard	ise A A B E Dense U U D E Se M M Ux 1	Auger Bulk sa Jndisti Disturb Noistu Tube s	sample ample urbed sam bed sample re content ample (x rr	ple V = E nm) F	 Pocket p Standard Standard Vane sh VP Dynam penetro D Field dei 	enetrometer I penetration f ear hic cone ometer hsity	SYMB test SOIL [Y N	ULS AND DESCRIPTION USCS Agricultural
	V-E CTur TPu	igsten sh tub	Carbi e	de Bit			→ Wat	er inflo	W	F Fri	adie				V	vS Water s	ample		
et N0. 4			2			E	XCAVATI	ON L	OG TO BE READ IN CONJUN	CTION WITH A IARTENS & AS 6/37 Le	ACCOMPANYING REP SSOCIATES PTY LTD eighton Place	ORT NOTE	ES AN		Eviati E nc	ions gine	erin	a Lo	a -
		P	a	rte	n	5 	2014		Phor mail@marl	Hornsby, Na ne: (02) 9476 9 tens.com.au W	SW 2077 Australia 999 Fax: (02) 9476 876 EB: http://www.martens	67 s.com.au		-		Bo	oreh	ole	

CL	IEN	Г	Р	lanix Pro	ojects				COMMENCED	20.05.14	COMPLET	ED	20.05.14			REF	BH1	10			
PR	OJE	СТ	G	eotechn	ical/Ac	id Sulph	ate	Soils Assessment	LOGGED	АВ	CHECKED)	GT			Sheet 1	of 1	-			
SIT	E		C	abbage	Tree R	oad, Bay	vie	w, NSW	GEOLOGY	Hawkesbury Sandstone			Grass			PROJECT	NO. P140417	9			
EXC	AVAT		DIME	SIONS	Ø100mm 2	X 5.5m depth			NORTHING	-	ASPECT	AUE	South East			SLOPE	15-20%				
	EX	CA\	/AT	ION DAT	ГА			МАТ	ERIAL DAT	А				S	MPLIN	G & TES	TING				
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)	L M PENETRATION R R R SISTANCE	GRAPHIC LOG	CLASSIFICATION	DESCRIPT Soil type, texture, structure, mo particle characteristics, organi fill, cont	TION OF STRAT ttling, colour, plast ics, secondary and amination, odour.	TA icity, rocks, oxidation, d minor components,	CONSISTENCY			DEPTH (M)	A	RES DDITIONA	ULTS AND L OBSERVAT	TIONS			
V	Nil	N	D	- 0.15 -	**	× × ×	GS	Gravelly SAND - Me	edium grained	d, beige/white,						- T - F		-			
v	Nil	N	D	_ _ 0.6			SP	Silty SAND - Dark bro	own, fine to m	edium grained.			А	0.5	4179/11	0/ 0.5		-			
v	Nil	N	м	- - <u>1.0</u>		 	CL	CLAY - Low to medium w	plasticity, lig ith sand.	ht brown/orange,	F- St		A	1.0	4179/11	- R 0/ 1.0	ESIDUAL	- - 1 <u>.0</u>			
v	Nil	N	D	1.1 - - 1.6				SANDSTONE - Infer red/brown, extreme light brow	red extremely ely weathered wn, red at 1.4	y low strength, I, grading to m.			A	1.5	4179/11	0/ 1.5 - V	Bit refusal at 1.6	- - - m			
тс	Nil	Ν	D	2.0				SANDSTONE - Inferred extremely to	l very low stre highly weath	ength, grey/white, lered.			A	A 3.0 4179/110/3.0 3.0 4.0 4.0 5.0 5.0 5.0							
								Borehole termina low stren	ated at 5.5m on the sandstor	on Inferred								-			
E XX B HS C V T P	EXAMPLENT METROD Superport WATER Molect UPR PetertRATION Consust Entry Superport Auger sample Superport S														6.0 						
	ľ		a	rte Martens & Ass	ns ociates Pty. I	Ltd . 2014		N mail@mar	ARTENS & AS 6/37 Le Hornsby, NS ne: (02) 9476 99 tens.com.au W	SSOCIATES PTY LTD eighton Place SW 2077 Australia 999 Fax: (02) 9476 876 EB: http://www.martens	67 s.com.au		E	Eng	gine Bo	ering	g Log ole	1 -			

CLI	ENT	V	Vaterbro	ook Life	style Resort				COMMENCED	20/09/2017	COMPLETED	20/0	09/20	17	REF BH301
PR	OJEC	тс	Geotech	nical ar	d Acid Sulfate Soils As	sses	ssmen	t	LOGGED	MV	CHECKED	RE			
SIT	E	E	Bayview	Golf Co	ourse, Bayview, NSW				GEOLOGY	Narrabeen Group	VEGETATION	Gra	SS		Sheet 1 OF 1 PROJECT NO. P1706099
EQI	JIPME	NT			4WD truck-mounted hydra	aulic	drill rig		EASTING		RL SURFACE	15 r	n		DATUM AHD
EXC	AVAT	ION [DIMENSI	ONS	ø100 mm x 3.00 m depth				NORTHING		ASPECT	Eas	ŧ		SLOPE 5%
		Dri	lling		Sampling	_				F	ield Material D)escr	iptio	n	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	OCK MATERIAL DESC	CRIPTION		MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			-	15.00	6099/BH301/0.2/S/1 D 0.20 m			ML	TOPSOIL: Sandy SI	LT, low liquid limit, dark b	prown.			St - VSt	TOPSOIL -
ADN	L-M	ntered	- 1	14.30 1.10 13.90	6099/BH301/0.9/S/1 D 0.90 m			CL	Sandy CLAY, low pl	asticity, pale orange/brow	vn	·		VSt and	RESIDUAL SOIL
		Not Encou	-	<u>1.60</u> 13.40	-		× · · · · ·		SANDSTONE, medi bands, inferred extre	ium grained, pale yellow, emely low and very low s	trace claystone trength, distinctly		D		WEATHERED ROCK
AD/T	м		2						weathered.						-
			-	2.50 12.50 3.00	2.40 m				Pale pink/white.						-
2									Hole Terminated at	3.00 m					-
			- - 4												-
			-												-
			- 5—												
			-												
			6— - -												-
			- - 7												- - -
			-												
			8												-
			-												
						<u> </u>									
	(c) Copyr	art ight Martens	en & Associate	S s Ply. Ltd.			Suit	MARTENS & / e 201, 20 George S Phone: (02) 9476 @martens.com.au	ASSOCIATES PTY LTE st. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marte) Australia 767 ns.com.au	0 /		En	gineering Log - BOREHOLE

CLI	ENT	V	Vaterbro	ok Life	style Resort				COMMENCED	20/09/2017	COMPLETED	20/09/20	17		REF	BH302
PR	OJEC	т	Geotechi	nical ar	nd Acid Sulfate Soils	Asse	ssmen	t	LOGGED	АМ	CHECKED	RE				4 95 9
SIT	E	E	Bayview	Golf Co	ourse, Bayview, NSW	1			GEOLOGY	Narrabeen Group	VEGETATION	Grass			Sheet PROJECT	1 OF 3 NO. P1706099
EQU	JIPME	NT			4WD truck-mounted hyd	draulio	drill rig	1	EASTING		RL SURFACE	19.7 m			DATUM	AHD
EXC	AVAT	ION I	DIMENSI	ONS	ø100 mm x 12.00 m de	pth			NORTHING		ASPECT	South			SLOPE	2-5%
		Dri	lling		Sampling	_		2		Fi	ield Material D	escriptio	on	1		
METHOD	. PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATIOI	SOIL/RC	OCK MATERIAL DESC	CRIPTION		CONSISTENCY DENSITY	TOPSC	STRU AD OBSE	CTURE AND DITIONAL ERVATIONS
	<u> </u>		-	0.15 19.55	P6099/302/0.1/S/1 D 0.10 m				OPSOIL: SILT, low Silty CLAY, low plas	ticity, dark brown and red	n <u>e grained sand.</u> , with subangular		F	RESID		
2			-		P6099/302/0.3/S/1 D 0.30 m		, 		andstone gravels (<7mm).			St			-
Ϋ́Ρ	L-M				D6000/202/0 0/0/4 D		` `					м				-
		,ed	1—		P6099/302/0.8/S/1 D 0.80 m P6099/302/0.9/S/1 D	-	` 						VSt			-
		bserv	-	1.20 18.50	0.90 m		<u> </u>		ANDSTONE, fine	grained, light grey/red/bro	wn/orange, with	-+-	+ -	WEATH	HERED ROO	
		Not O	-				· · · · ·	b s	ands of claystone/ trength, distinctly w	siltstone, inferred extreme veathered.	ely low and very lo	w		1.20: V-	-bit refusal.	-
		-					· · · · ·									-
D1	м		2—													-
			-				· · · · ·									-
			-				· · · · ·									-
			_	2.80												-
			3						Continued as Corec	i Borehole						-
			-													-
1-13			-													-
0 2016-1																-
artens 2.(4													_
13 Prj: M			-													-
2016-11-			-													-
ans 2.00.2																-
-ib: Marte			5 —													_
- DGD			-													-
Situ Tool			-													-
ab and In																-
Datgel L			6													_
8.30.004			-													-
7 11:32 (-
2/10/201																-
File> 1			7													-
< Drawing			-													-
5.GPJ <			-													-
01 17092																-
19BH01V			8-													-
P170605			-													-
EHOLE			-													-
ENS BOR																-
g MART.														DE\/!^7		
2:00 LIB.GLB Lo	'n	n	art	٥n				Suite	MARTENS & 201, 20 George S	ASSOCIATES PTY LTD St. Hornsby, NSW 2077	Australia		En	gin	eerin	g Log -
MARTENS	(C) Copyr	ight Martens	Associate	es Pty. Ltd.			mail@	martens.com.au	WEB: http://www.marter	ns.com.au			BO	REH	OLE

CLIENT	w	/aterb	rook L	ifestyle	Resort		COMMENCED	20/09/2	2017		со	MPLETED	20/09/2017	REF	BH302	
PROJECT	G	eotec	hnical	and Aci	d Sulfa	ate Soils Assessment	LOGGED	AM			сн	ECKED	RE			
SITE	Ва	ayviev	w Golf	Course	, Bayvi	ew, NSW	GEOLOGY	Narrab	een G	iroup	VE	GETATION	Grass	- Sheet	2 OF	3
EQUIPMENT	т			4WD	truck-ma	ounted hydraulic drill rig	EASTING				RL	SURFACE	19.7 m	DATUM	AHD	
EXCAVATIO	DN D	IMENS	SIONS	ø100	mm x 1	2.00 m depth	NORTHING				AS	PECT	South	SLOPE	2-5%	
	[Drillin	g			Field	Material Descr	iption					Defec	t Informatio	n	
METHOD WATER	ICK	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIA	L DESCRIPTIO	N	WEATHERING	INFERR STRENC Is ₍₅₀₎ MI	ED STH Pa		DEFECT DESCF & Additional Obso	RIPTION ervations	AVI DE SP (ERAGE FECT ACING mm)
3.B. Log MARTENS CORED BORFHOLE PT/06698H01/V01 7702X.GPJ < Annual Log NMARTENS CORED BORFHOLE PT/06698H01/V01 7702X.GPJ < Non- Non-		100 100) 96 100) 91 100) 100) 100) 100 100) 100 100) 84 100)		2.80 16.90	VATIC	Continuation from non-cored b SANDSTONE, fine grained, be and red-brown with some yello claystone/siltstone (<300mm).	orehole dding 0-10°, light w-brown, with bar dding 5-10°. th some pale grey litstone (<300mm	grey ds of y and).	HW			2.80-2.85: 3.30: HB 3.52: HB 3.75-3.80: 4.12: JT, 3 4.33: cont 4.37: HB 4.40: JT, 0 4.37: HB 4.40: JT, 0 4.40: JT, 0 4.40: JT, 0 4.40: JT, 0 4.40: JT, 0 4.60: JT, 5 5.10: HB 5.65: JT, 4 5.65: JT, 4 5.65: JT, 4 5.65: JT, 4 5.65: JT, 4 5.65: JT, 5 6.11: cont 6.40: JT, 5 6.50: JT, 11 6.40: BP, 5 6.50: JT, 11 6.40: BP, 5 6.50: JT, 11 6.40: BP, 5 6.50: JT, 11 6.40: BP, 5 7.50: DB 7.50: DB 7.00: HB 8.30: HB 8.40: BP, 5 8.70: JT, 6 8.70: JT, 6 9.70:	DB HB ² , CN, UN, Sm act, 30° ³ , PI, Closed. DB 3 ³ , PI, Closed. ³ , CN, PI, RF ⁰ , CN, PI, RF ¹ , CN, PI, RF ⁵ , SN, PI, RF ⁵ , SN, PI, RF ⁵ , SN, PI, RF ⁵ , SN, PI, RF ⁶ , CN, PI, RF ⁷ , CN, PI, RF ⁷ , CN, UN, RF ⁷ , CN, UN, RF ¹ , CN, UN, RF ¹ , CN, UN, RF ² , CT, UN, RF	rruginised.		
		ht Marter	: er	1 S iates Pty. Lte	d.	Suite 2 F mail@n	MARTENS & 201, 20 George S Phone: (02) 9476 nartens.com.au	ASSOC St. Horns 9999 F WEB: ht	IATES sby, N ax: ((ttp://w	8 PTY LTD ISW 2077 02) 9476 8 ww.marte) Aust 767 ns.co	tralia om.au	Engir B(neerin DREH	g Log - OLE	1

CLI	ENT	V	Vater	brook L	ifestyle	Resort		COMMENCED	20/09/	2017		COMPL	LETED	20/09/2017	REF	BH3	02
PR	OJEC	т	Geote	echnical	and Ac	d Sulfa	te Soils Assessment	LOGGED	AM			CHECK	KED	RE			05.0
SIT	E	E	Bayvie	ew Golf	Course	Bayvi	ew, NSW	GEOLOGY	Narrat	been G	roup	VEGET	TATION	Grass	PROJECT	3 NO. P1706	099
EQI	JIPME	INT			4WD	ruck-m	ounted hydraulic drill rig	EASTING				RL SUP	RFACE	19.7 m	DATUM	AHD	
EXC	AVAT	'ION I	DIMEN	NSIONS	Ø100	mm x 1	2.00 m depth	NORTHING				ASPEC	СТ	South	SLOPE	2-5%	
-			Drilli	ng			Field	Material Descr	iption					Def	ect Informatio	on	
МЕТНОD	WATER	TCR	RQD (SCR)	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIA	L DESCRIPTIO	NC	WEATHERING	INFERR STRENC Is ₍₅₀₎ MF	ED GTH Pa		DEFECT DES & Additional Ob	CRIPTION oservations		AVERAGE DEFECT SPACING (mm)
ag MARTENS CORED BOREHOLE P/7060998H401V01 170926.GPJ < <drawingfile> 72/10201711:58 8.30.004 DaggeLue and in Sku Tod - DGD [Lb: Martens 2.00 2016-11-13 Pi; Martens 2.00 2</drawingfile>	Not Observed W	100	α 100 (100) 87 (100) 100 (100) 100		11.70 8.00 12.00 7.70	VATIC	SANDSTONE, fine grained, be yellow-brown and red-brown wi grey, with bands of claystone/s SANDSTONE, fine grained, be red-brown, with bands of clayst (c300mm). Hole Terminated at 12.00 m (Target depth reached)	dding 5-10°, th some pale gre; litstone (<300mm dding ±10°, grey one/siltstone	y and).			5 0 1 8.7 1 8.7 1 9.2 1 9.2 1 9.2 1 9.2 1 9.2 1 9.2 1 9.2 1 9.2 1 9.2 1 9.2 1 9.2 1 9.2 1 10. 1 10. 1 10. 1 10. 1 10. 1 10. 1 10. 1 10. 1 10. 1 10. 1 11. 1 11. 1 11. 1 11. 1 11. 1 11. 1 11. 1 11. 1 11. 1	78: JT, 2° 30: conta 23: HB 50: HB 72: JT, 70 95: HB 142: JT, 4 142: JT, 4 14	, CT, UN, RF ct, 65° °, SN, UN, RF 5°, SN, UN, RF 5°, SN, UN, RF 5°, CN, PI, RF 5°, CN, PI, RF 5°, CN, PI, RF	//ATIONS		
MARTENS 2.00 LIB.GLB	r) Copyr	a r	ters & Assoc	1S ciates Pty. Lt	<u>.</u>	Suite ź F mail@n	MARTENS & 201, 20 George S Phone: (02) 9476 hartens.com.au	ASSOC St. Horn 9999 1 WEB: h	CIATES Isby, N Fax: (0 http://w	8 PTY LTD SW 2077 2) 9476 8 ww.marte) Australia 767 ns.com.a	a	Engi B	ineerin OREH	g Lo OLE	g -

CL	IENT	,	Naterbro	ook Life	estyle Resort				COMMENCED	20/09/2017	COMPLETED	20/09/2017	REF MW02
PR	OJEC	т	Geotech	nical ar	nd Acid Sulfate Soils A	sses	ssmen	t	LOGGED	AM	CHECKED	RE	
SIT	E		Bayview	Golf C	ourse, Bayview, NSW				GEOLOGY	Narrabeen Group	VEGETATION	Grass	Sheet 2 OF 2
EQ	UIPME	I			4WD truck-mounted hyd	raulic	drill rig	1	EASTING		RL SURFACE	19.7 m	DATUM AHD
EXC	CAVAT	ION	DIMENSI	ONS	ø100 mm x 12.00 m dep	oth			NORTHING		ASPECT	South	SLOPE 2-5%
		Dr	lling		Sampling	_				F	ield Material D	escription	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE CONDITION CONSISTENCY DENSITY	PIEZOMETER DETAILS
B Log MARTENS BOREHOLE P17060989H01V01170826.GPJ <-ChrawingFile> 12/10/2017 11:33 8.30.004 Dagel Lab and InShu Tool- DCD Lb: Martens 2.00.2016-11-13 Pr; Martens 2.00.2016-11-13 Martens 2.00.2016-11	L-M	21/09/17		<u>11.70</u> 8.00 12.00	EXCAVATION LOG T				SANDSTONE, fine (red-brown with som claystone/siltstone (SANDSTONE, fine, with bands of clayst Hole Terminated at (Target depth reach	grained, bedding 5-10°, y e pale grey and grey, wit <300mm). grained, bedding ±10°, g one/siltstone (<300mm). 12.00 m ed)	relow-brown and h bands of		
MARTENS 2.00 LIB.GL	r	Copy	art right Martens	en & Associate	S es Pty. Ltd.			Sui mail	MARTENS & te 201, 20 George S Phone: (02) 9476 @martens.com.au	ASSOCIATES PTY LTE St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marte) Australia 767 ns.com.au	Engir B(neering Log - DREHOLE

CL	IENT	1	Vaterbro	ok Life	style Resort				COMMENCED	21/09/2017	COMPLETED	21/0	09/20	17		REF	BH303
PR	OJEC	т	Geotech	nical ar	nd Acid Sulfate Soils A	sse	ssmen	t	LOGGED	MV	CHECKED	RE					
SIT	ΓE		Bayview	Golf Co	ourse, Bayview, NSW				GEOLOGY	Narrabeen Group	VEGETATION	Gra	ISS			Sheet	1 OF 3
EQ	UIPME	INT			4WD truck-mounted hyd	raulio	drill rig	1	EASTING		RL SURFACE	24.	5 m			DATUM	AHD
EX	CAVAT	ION	DIMENSI	ONS	ø100 mm x 13.40 m dep	th			NORTHING		ASPECT	SE				SLOPE	2-5%
		Dri	lling		Sampling					F	ield Material D	esci	riptic	n			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE	CONSISTENCY DENSITY		STRU ADI OBSE	CTURE AND DITIONAL ERVATIONS
			-	24.50	P6099/303/0 2/S/1 D		K	ML	TOPSOIL: SILT, low	/ liquid limit, pale brown.					TOPSC	NL	-
ADA	L-M		-	24.20	0.20 m		×	CL	Silty CLAY, low plas	ticity, brown.			D	St - VSt	RESID	JAL SOIL	
	<u> </u>		-	0.70	P6099/303/0.5/S/1 D 0.50 m		×						L _	<u> </u>			
	M	ot Observed	1	23.80	P6099/303/0.8/R/1 D 0.80 m				SANDSTONE, med orange/yellow/brow strength, with mediu weathered.	ium to coarse grained, pa n, inferred extremely low a um strength ironstone bar	ale and very low nds, distinctly				0.70: V	-bit refusal.	
AD/T	н	ž	2		P6099/303/1.5/R/1 D 1.50 m												-
			-	2.62													-
									Continued as Corec	Borehole							
			3—														-
			-														-
1s 2.00 2016-11-13			-														-
5-11-13 Prj: Marte			4														-
Martens 2.00 201			-														-
u Tool - DGD Lib:			-														-
tgel Lab and In Sit			-														-
1:32 8.30.004 Da			-														-
ie>> 12/10/2017																	-
3PJ < <drawingf.< td=""><td></td><td></td><td>, -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drawingf.<>			, -														
H01V01170925.(-														-
OLE P1706099B			8														-
MARTENS BOREH			_														-
B Log					EXCAVATION LOG T	O BI	E REA	DIN	CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES	AND	ABB	REVIAT	IONS	
ARTENS 2.00 LIB.GL	r ") Copy	art right Martens	en & Associate	S as Pty. Ltd.			Sui mail	MARTENS & A te 201, 20 George S Phone: (02) 9476 @martens.com.au	ASSOCIATES PTY LTE St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marte) Australia 767 ns.com.au		l	En	gin BO	eerin REH	g Log - OLE

CLIENT	Wa	aterbro	ok Lif	estyle I	Resort		COMMENCED	21/09/2	2017		СС	OMPLETED	21/09/2017	REF	BH3	03	
PROJECT	Ge	eotechr	nical a	and Aci	d Sulfa	te Soils Assessment	LOGGED	MV			Cŀ	IECKED	RE				
SITE	Ва	yview (Golf C	Course,	Bayvie	ew, NSW	GEOLOGY	Narrab	een G	roup	VE	GETATION	Grass	- Sheet	2 NO P1706	OF 3	
EQUIPMENT				4WD t	ruck-mo	ounted hydraulic drill rig	EASTING				RL	SURFACE	24.5 m	DATUM	AHD		
EXCAVATION	N DI	MENSIC	ONS	ø100	mm x 1:	3.40 m depth	NORTHING				AS	PECT	SE	SLOPE	2-5%		
	D	rilling				Field I	Material Descr	iption					Defec	t Informatio	'n		
METHOD WATER TCR		RQD (SCR) DEPTH	(metres)	D <i>EPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIA	L DESCRIPTIO	NC	WEATHERING		RED GTH Pa	5	DEFECT DESCR & Additional Obse	RIPTION ervations		AVEF DEF SPAC (m	RAGE ECT CING m)
25.1547 < <dector unignetic=""> 12/10/2017/11:88 63:0.004 Using test > 12/10/2017/11:88 63:0.004 Us</dector>		00 00) 30 00) 30 00) 72 00) 75 00)		<u>2.62</u> 21.88 <u>4.40</u> 20.10		Continuation from non-cored b SANDSTONE, fine grained, be yellow-brown with some pale g red-brown, with claystone and s (<700mm).	orehole dding 0-5°, rey-brown and siltstone bands		HW			2.81: HB 2.98: HB 3.05: HB 3.05: HB 3.05: HB 3.30: JT, 30 3.30: HB 3.48: HB 4.37: JT, 77 4.40: 4.57: 4.50: 4.60: 1 5.15: JT, 11 5.18: HB 5.30-5.55: 1 5.68: JT, 10 5.77: JT, 11 5.81: JT, 57 6.08: HB 6.18: HB 7.04: HB 7.04: HB 7.04: HB	0°, CN, UN, RF act °, CN, UN, RF act °, CN, UN, RF °, CN, UN, RF SZ 5°, SN, PI, RF SZ 5°, CN, UN, RF °, CN, UN, RF °, CN, UN, RF				
NY LENS COREJ BOREHOLE PY/060888H0/W01 7/08	(1 	86 00) 65 00)	8	<u>7.50</u> 17.00		SANDSTONE, fine grained, be and yellow-brown, with claystor (<700mm).	dding 5-10°, red- he and siltstone b	 brown ands				7.20-8.80: :	SZ				
	a	rte	e n	EXCA	VATIO	N LOG TO BE READ IN CO Suite 2 F mail@n	MARTENS & 201, 20 George S Phone: (02) 9476 nartens.com.au	TH ACC ASSOCI St. Horns 9999 F WEB: ht	COMF IATES sby, N ax: (0 ttp://w	PANYING PTY LTE SW 2077 2) 9476 8 ww.marte	Aus 767	Stralia	Engin BC	TIONS DEERIN DREH	g Log OLE	g -	

CLIEI	NT	V	Vater	brook L	ifestyle	Resort		COMMENCED	21/09/2	2017		CO	MPLETED	21/09/2017	REF	BH3	03	
PRO	JEC	т	Geote	echnical	and Ac	d Sulfa	te Soils Assessment	LOGGED	MV			СН	ECKED	RE	Ohant			
SITE		E	Bayvie	ew Golf	Course	Bayvi	ew, NSW	GEOLOGY	Narrab	een G	roup	VE	GETATION	Grass	PROJECT	3 NO. P1706	099	
EQUIF	PME	NT			4WD	ruck-m	ounted hydraulic drill rig	EASTING				RL	SURFACE	24.5 m	DATUM	AHD		
EXCA	VAT	ION [DIMEN	NSIONS	Ø100	mm x 1	3.40 m depth	NORTHING				ASF	PECT	SE	SLOPE	2-5%		
			Drilli	ng			Field	Material Descr	iption					Defect	Informatio	on		
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	CRAPHIC LOG	ROCK / SOIL MATERIA	L DESCRIPTIO	DN	₹ WEATHERING		ED STH Pa , ₽ , ₽ , ₽	0.06: 17.2	DEFECT DESCR & Additional Obser	IPTION rvations		AVEF DEF SPAC (m	AGE ECT CING m)
TENS CORED BOREHOLE PT/060698H01V01 170825.GPJ <	Not Observed Not Observed	100	72 (100) 91 (100) 97 (100) 100 (100)		<u>11.70</u> 12.80 <u>13.40</u> 11.10		SANDSTONE, fine grained, pa and yellow-brown, with claystor (<700mm).	le grey and pale <i>i</i> th claystone and	brown ands				9.06: JT, 2' 9.10-9.20: J 9.34: BP, 3 9.45: JT, 10 9.50: JT, 5' 9.50: JT, 5' 9.60-9.90: : 10.10: BP, 10.13: JT, 4 10.40: HB 10.60: HB 10.66: HB 10.66: HB 10.66: JT, 11.06: JT, 11.06: JT, 11.06: JT, 11.96: BP, 12.15-12.4'	2, CT, UN, S 2, CN, UN, RF ⁵ , CN, UN, RF ⁷ , CN, UN, RF ¹⁰ , SN, UN, RF ¹⁰ , CN, UN, RF ¹⁰ , CN, UN, RF ¹⁰ , CN, PI, RF ¹⁰ , CN, PI, RF ¹⁰ , CN, PI, RF ¹⁰ , SP Set 2, 5°, CN, PI, F ¹⁰ , SP Set 2, 2°, CN, PI, F	۶F ۶F ۶F			
					EXCA	VATIC	N LOG TO BE READ IN CO		TH ACC		PANYING	REF		ES AND ABBREVIA	TIONS			
	n (C)) Copyri	a r ight Mar	ters & Assoc	15 Diates Pty. Lt	i.	Suite ź F meil@n	MARTENS & 201, 20 George S Phone: (02) 9476 nartens.com.au	ASSOC St. Horns 9999 F WEB: h	IATES sby, N Fax: (0 ttp://w	8 PTY LTD ISW 2077 2) 9476 87 ww.marter	Aust 767 ns.co	tralia om.au	Engin BC	eerin REH	g Log OLE	g -	

CL	IENT	\	Vaterbro	ook Life	estyle Resort				COMMENCED	21/09/2017	COMPLETED	21/09/2017	REF MW03
PR	OJEC	т	Geotech	nical ar	nd Acid Sulfate Soils A	sses	ssmen	ıt	LOGGED	MV	CHECKED	RE]
SIT	E	1	Bayview	Golf C	ourse, Bayview, NSW				GEOLOGY	Narrabeen Group	VEGETATION	Grass	- Sheet 2 OF 2 PROJECT NO. P1706099
EQ	UIPME	NT			4WD truck-mounted hyd	raulic	drill rig	1	EASTING		RL SURFACE	24.5 m	DATUM AHD
EXC	CAVAT	ION	DIMENSI	ONS	Ø100 mm x 13.40 m dep	oth			NORTHING		ASPECT	SE	SLOPE 2-5%
		Dri	lling		Sampling	_		7		Fi	ield Material D	escription	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE CONDITION CONSISTENCY DENSITY	PIEZOMETER DETAILS
B Log MATTENS BOREHOLE P1706098BH01Y0117025.62/ <-ChravingFiles-12/10/2017 11:33 83.004 DatgeLub and InStu Tool - DSD Lb. Martens 2.00 2016-11-13 Pr. Martens 2.00 2016-11-13 Martens 2.00 2016		21080112		11.70	EXCAVATION LOG T	OB	EREA		SANDSTONE, fine yellow-brown, with o SANDSTONE, fine yellow-brown, with c SANDSTONE, fine yellow-brown, with c Hole Terminated at (Target depth reach	grained, bedding 5-10°, re laystone and siltstone bar grained, pale grey and pa laystone and siltstone bar 13.40 m ed)	ed-brown and nds (<700mm).		Screen
0 LIB.GLt			2		-			Suit	MARTENS & A	ASSOCIATES PTY LTD) Australia	Enair	eerina Loa -
MARTENS 2.00) Copy	art ight Martens	en & Associate	S as Pty. Ltd.			mail	Phone: (02) 9476	9999 Fax: (02) 9476 8 WEB: http://www.marter	767 ns.com.au	BC	DREHOLE

CLI	ENT	\	Vaterbro	ook Life	estyle Resort				COMMENCED	20/09/2017	COMPLETED	20/0	09/20	17	F	REF	BH304
PR	OJEC	ст (Geotech	nical ar	nd Acid Sulfate Soils A	sses	smen	ıt	LOGGED	MV	CHECKED	RE					
SIT	E	E	Bayview	Golf Co	ourse, Bayview, NSW				GEOLOGY	Narrabeen Group	VEGETATION	Gra	SS		S P	Sheet PROJECT	1 OF 1 NO. P1706099
EQI	JIPME	INT			4WD truck-mounted hydr	aulic	drill rig	1	EASTING		RL SURFACE	16.5	5 m		C	DATUM	AHD
EXC	CAVAT	FION I	DIMENSI	ONS	Ø100 mm x 8.50 m deptr	ı			NORTHING		ASPECT	Sou	ıth		s	SLOPE	2-5%
	-	Dri	lling		Sampling	-				F	ield Material D)escr	iptio	n	1		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS DLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE CONDITION	CONSISTENCY DENSITY		STRUC ADI OBSE	CTURE AND DITIONAL RVATIONS
			_	16.50	P6099/304/0 2/S/1 D		\bigotimes	ML	FILL: Sandy SILT, lo material.	ow liquid limit, dark brown	, with organic			C+	FILL		-
			-	16.20	0.20 m		X	ML	TOPSOIL: SILT, low subangular sandsto	/ liquid limit, dark red/dark ne gravels.	brown, trace			VSt	TOPSOIL		
ΝQ			-	15.90	0.50 m			sc	Clayey SAND, dark	orange/brown, trace iron	staining.		D		RESIDUA	L SOIL	
			1	1.10	P6099/304/1.0/S/1 D		_								L		
	м		-	15.40	1.00 m		· · · · · · · · · ·		SANDSTONE, fine to ver	to medium grained, red/g ry low strength, distinctly v	rey/white, inferred weathered.	d			WEATHE 1.10: V-bit	RED ROC t refusal.	к
			_		P6099/304/1.5/R/1 D 1.50 m												-
			2_		P6099/304/1.9/R/1 D 1.90 m		· · · · ·										-
			-		1.00 m		· · · · ·										-
			-				· · · · ·										
			-				· · · · ·										-
			3 —	<u>3.00</u> 13.50	-		· · · · · · · · · ·		With claystone/siltst	one bands.							-
			_				· · · · · · · · · ·										
		5	-				· · · · ·										
		Intered	4														-
		Encou	-				· · · · ·										-
		Not	-				· · · · ·										-
			_				· · · · ·										-
AD/T	L-M		5 —				· · · · ·										-
			-				· · · · · · · · · ·										
			_				· · · · ·										
,			_				· · · · ·										-
			6				· · · · ·										-
			-														-
			7-														-
			-				· · · · ·										
							· · · · ·										-
			-				· · · · ·										-
			8-				· · · · ·										
				8.50													-
			-						Hole Terminated at	8.50 m							
	I		<u> </u>		EXCAVATION LOG TO) O BE	E REA	.D IN (THACCOMPANYING	REPORT NOT	TES A		ABB		ONS	
(r		art ight Martens	en & Associate	S Is Pty. Ltd.			Su mail	MARTENS & te 201, 20 George S Phone: (02) 9476 @martens.com.au	ASSOCIATES PTY LTE St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8' WEB: http://www.marter) Australia 767 ns.com.au			En	gine BOF	erin REH	g Log - OLE

CL	IENT	\	Vaterbro	ook Life	estyle Resort				COMMENCED	21/09/2017	COMPLETED	21/09	9/20 ⁻	17		REF	BH305
PR	ROJEC	т	Geotech	nical ar	nd Acid Sulfate Soils A	sse	ssmen	t	LOGGED	АМ	CHECKED	RE					
SIT	ГЕ	E	Bayview	Golf Co	ourse, Bayview, NSW				GEOLOGY	Narrabeen Group	VEGETATION	Grass	s			Sheet PROJECT	1 OF 3 NO. P1706099
EQ	UIPME	NT			4WD truck-mounted hydr	raulio	drill rig		EASTING		RL SURFACE	19.9 ו	m			DATUM	AHD
EX	CAVAT	ION	DIMENSI	SNC	Ø100 mm x 15.00 m dep	th			NORTHING		ASPECT	South	h			SLOPE	2-5%
	_	Dri	lling		Sampling	_		z		Fi	ield Material D	escrip	ptio	n			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATIO	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTLIBE	CONDITION	CONSISTENCY DENSITY	TODOO	STRU AD OBSI	CTURE AND DITIONAL ERVATIONS
ADN	L-M		-	0.20 19.70	P6099/305/0.1/S/1 D 0.10 m P6099/305/0.3/S/1 D 0.30 m			ML SM	TOPSOIL: SILT, low with subangular san TOPSOIL: Silty SAN and trace of subang	/ liquid limit, brown, trace idstone gravels ID, fine grained, brown/or jular sandstone gravels.	of fine grained sa ange/red, with cla	ind, ay		St D	10050	μL	
	+-		-	<i>0.60</i> 19.30	P6099/305/0.7/R/1 D				SANDSTONE, fine siltstone bands, infe	grained, orange/red/grey, rred extremely low and ve	with claystone and a strength,	nd –			WEATH 0.60: V-	IERED ROO bit refusal.	
		rved	1—		0.7011		· · · · · · · · · ·		distinctly weathered								-
		Obsei	-				· · · · · · · · · ·						П				
Ŀ		Not	-				· · · · ·						D				
AD			-				· · · · · · · · · ·										
			2				· · · · ·										-
			-				· · · · ·										
			-	2.80													
			3—						Continued as Corec	l Borehole							_
			-														
11-13			-														
.00 2016-			_														
Martens 2			4														-
11-13 Prj:																	
.00 2016-			_														
Martens 2			-														
GD LIb:			5														-
u Tool - D			-														
and In Sit			-														
Datgel Lab			6-														-
3.30.004 1			-														
17 11:32 (-														
12/10/20			-														
ingFile>>			7—														-
J < <draw< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></draw<>																	
0925.GP.			-														
101/01 11			-														
70609981			8-														-
HOLE P1			-														
AS BORE			-														
g MARTE																	
IARTENS 2.00 LIB.GLB Log	(m	Copyr	art right Martens	en & Associate	EXCAVATION LOG TO S Is Ply. Ltd.	υB	<u>e rea</u>) IN (Sui mail	MARTENS & A MARTENS & A te 201, 20 George S Phone: (02) 9476 @martens.com.au	ASSOCIATES PTY LTE 5t. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter	KEPOR I NO Australia 767 ns.com.au	IES A		авві Е п	gin BO	eerin REH	g Log - OLE

CLI	ENT	\	Vate	rbrook L	ifestyle	Resort		COMMENCED 21/09/2017 COMPLE					PLETED	ETED 21/09/2017 REF BH305				
PR	OJEC	т	Geote	echnical	and Ac	d Sulfa	te Soils Assessment	LOGGED AM				CHEC	KED	RE				
SIT	E	E	Bayvi	ew Golf	Course	, Bayvie	ew, NSW	GEOLOGY	Narrab	een G	iroup	VEGE	TATION	Grass	Sheet	- Sheet 2 OF 3 PROJECT NO. P1706099		
EQU	JIPME	INT			4WD	truck-ma	ounted hydraulic drill rig	EASTING				RL SU	JRFACE	19.9 m	DATUM	AHD		
EXC	AVAT	ION	DIME	NSIONS	ø100	mm x 1	5.00 m depth	NORTHING				ASPE	СТ	South	SLOPE	2-5%		
			Drilli	ing			Field I	Material Description						De	fect Informati	on		
МЕТНОD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIA	L DESCRIPTION						DEFECT DES & Additional OI	CRIPTION bservations		AVERAGE DEFECT SPACING (mm)	
				- 1 - - - - - - - - - - - - - - - -			Continuation from non-correct b	orobolo										
		100	0 (100)	3-	2.80 17.10	· · · · ·	Continuation from non-cored be SANDSTONE, fine grained, rec bedding 0-10°, with claystone a (<400mm).	orehole d/brown/light grey and siltstone banc	, Is	нw		2.	.80-10.30:	SZ				
I-13 Prj: Martens 2.00 2016-11-13		100	71 (71)	- - - - 4														
od - DGD Lib: Martens 2.00 2016-1		100	83 (100)	 - 5														
0.004 Datgel Lab and In Situ T VMLC	ot Observed	100	57 (100)															
wngFile>> 12/10/2017 11:58 8:3	Z	94	94 (94)	-	6.94													
706099BH01V01 170925.GPJ <<01		70	0 (60)	0 (60) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.30 12.60	*******	NO CORE CLAYSTONE and SILTSTONE red/light grey/yellow-brown.	, bedding 5-10°,										
MARTENS CORED BOREHULE P1		90	10 (40)	- 8 - - - -	8.90 11.00	× × × × × × × × × × × × × × × × × × ×												
MARIENS 2:00 LIB:GLB Log	(C	Copyr	a r	' ter rtens & Asso	EXCA 1S ciates Pty. Lt		N LOG TO BE READ IN COI Suite 2 F mail@m	MARTENS & 201, 20 George S Phone: (02) 9476 nartens.com.au	ASSOC ASSOC St. Horns 9999 F WEB: ht	COMF	PANYING S PTY LTD ISW 2077 D2) 9476 87 ww.marter	REPO Austral 767 ns.com	iia .au	ES AND ABBRE	ineerin SOREH	ng Lo IOLE	g -	

CLI	ENT	\	Waterbrook Lifestyle Resort				COMMENCED 21/09/2017 C					MPLETED	21/09/2017	REF BH305					
PR	OJEC	т	Geote	echnical	and Ac	d Sulfa	te Soils Assessment	LOGGED AM					ECKED	RE					
SIT	E	1	Bayvie	ew Golf	Course	, Bayvie	ew, NSW	GEOLOGY	Narrab	een (Group	VE	GETATION	Grass	PROJECT	3 NO. P1706	0⊢3 099		
EQ	JIPME	NT			4WD	truck-ma	ounted hydraulic drill rig	EASTING				RL	SURFACE	ACE 19.9 m DATUM AHD					
EXC	AVAT	ION	DIMEN	SIONS	ø100	mm x 1	5.00 m depth	NORTHING					PECT	South SLOPE 2-5%					
			Drilli	ng			Field I	Material Descr	iption					Defec	t Informatio	on			
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIA	AL DESCRIPTION					RED AVE 3TH DEFECT DESCRIPTION Pa & Additional Observations						
		0	0 (0)	- - - 10															
		70) 60 (70)	<u>10.30</u> 9.60	××××××××××××××××××××××××××××××××××××××	CLAYSTONE and SILTSTONE grey/yellow-brown.	, light red/light					10.38-10.5 10.65: DB 10.74: DB 10.90: BP, 11.04: BP,	1.54: BP Set 4, 2°, CN, UN, RF B P, 5°, CN, UN, RF P, 3°, CN, UN, RF						
NMLC	Vot Observed	80	45 (50)	- - 12 —	11.80 8.10 12.00 7.90	*******	NO CORE		 				11.20-13.6	0: SZ					
13 Pŋ: Marens 2.00 2016-11-13	2	55	50 (50)	- - - 13	<u>12.50</u> 7.40	××× ×××	yellow-brown.												
- DGD LID: Martens 2.00 2016-11-	Not Observed	50	46 (46)	- - - 14	13.45 6.45 × × × × × ×	× × × × × × × × × × × × × × × × × × ×	CLAYSTONE and SILTSTONE yellow-brown.	, red with light gre	 ey and										
1,004 Datgel Lab and In Situ Tool		100	90 (100)	- - -	15.00	× × × × × × × × × × × × × × × × × × × ×							14.10: JT, : 14.30: BP, 14.52: HB	20°, CN, UN, RF 5°, CN, UN, RF 70° CN, UN, RF					
TENS CORED BOREHOLE PY7060996H401V01 170425.0474 < 					4.90		Hole Terminated at 15.00 m (Target depth reached)						14.93: JT, 14.93: JT, 14.96: JT,	10, 01, RF 20°, CN, UN, RF 5°, CN, UN, RF					
) Copy) a r	tens & Asso	EXCA		N LOG TO BE READ IN CO Suite 2 F mail@n	MARTENS & . MARTENS & . 201, 20 George \$ Phone: (02) 9476 hartens.com.au	TH ACC ASSOC St. Horns 9999 F WEB: ht	LOMI IATE: sby, f fax: (i ttp://v	ANYING S PTY LTE SW 2077 2) 9476 8 ww.marte	Aust 767 Aust	PORT NO tralia om.au	Engin BC	TIONS DEERIN DREH	g Log OLE	g -		

С	LIEN	IT	W	/aterbro	ook Life	style Resort				COMMENCED	21/09/2017	COMPLETED	21/0	09/2017		REF	MW05
Р	ROJ	ECT	ECT Geotechnical and Acid Sulfate Soils Assessment							LOGGED	АМ	CHECKED	RE				
s	ITE		В	ayview	Golf Co	ourse, Bayview, NSW				GEOLOGY	Narrabeen Group	VEGETATION	Gra	iss		Sheet PROJECT	2 OF 2 NO. P1706099
E	QUIP	MEN	IT			4WD truck-mounted hydr	aulic	drill rig	9	EASTING		DATUM	AHD				
EXCAVATION DIMENSIONS Ø100 mm x 15.00 m depth										NORTHING	NORTHING ASPECT South SLOPE 2-5%						2-5%
	_		Drill	ling		Sampling	-				Fi	eld Material D	escr	ription			
METHOD	PENETRATION	RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	RIPTION		MOISTURE CONDITION CONSISTENCY DENSITY	F I <u>D Sta</u> MW05	PIEZOME ⁻	TER DETAILS 월
					10.30 9.60 11.80 8.10 12.00 7.90 12.50 7.40 13.45		DBE			O CORE LAYSTONE and S O CORE LAYSTONE and S Ilow-brown. O CORE LAYSTONE and S Ilow-brown. O CORE IAYSTONE and S Ilow-brown. NJUCTION WI MARTENS &	ILTSTONE, light red/light	grey/yellow-brow					Soreen
	((C)		ht Martens	en & Associate	S as Pty. Ltd.			Suite I mail@r	201, 20 George S Phone: (02) 9476 martens.com.au	St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter	Australia 767 ns.com.au		En	gine BO	erin REH	g Log - OLE

CL	IENT	1	Waterbro	ook Life	style Resort			COMMENCED	20/09/2017	COMPLETED	20/0)9/20	17	BH306		
PR	OJEC	т	Geotechi	nical ar	nd Acid Sulfate Soils As	sessmer	nt	LOGGED	MV	CHECKED	RE					
SIT	Ē	-	Bayview	Golf Co	ourse, Bayview, NSW			GEOLOGY	Narrabeen Group	VEGETATION	Gras	ss			Sheet	1 OF 1
EQ	JIPME	INT			4WD truck-mounted hydra	aulic drill rig	9	EASTING		RL SURFACE	7 m				DATUM	AHD
EXC	CAVAT	ION	DIMENSI	ONS	Ø100 mm x 2.80 m depth			NORTHING	JORTHING ASPECT Northeast SLOPE 5-10%							5-10%
		Dri	illing		Sampling				F	ield Material D	escr	iptio	n	• •		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC							STRU AD OBSI	CTURE AND DITIONAL ERVATIONS
	L		6.95 0.25 6099/BH306/0.2/S/1 D CI FILL: Sitty SAND, fine to medium grained, brown.										MD	FILL		
AD/V	L-M	Not Encountered		<u>1.00</u> <u>1.10</u> 5.90	0.20 m 6099/BH306/0.3/S/1 D 0.30 m 6099/BH306/0.3-0.6/CB CBR 0.30 m 6099/BH306/1.0/S/1 D 1.00 m 6099/BH306/1.5/S/1 D 1.50 m			LAY, high plasticity lottled red/grey. LAY, high plasticity	y, pale brown/white.			м	St and VSt St - VSt			- - - - - - - - - - - - - -
			2	2.00 5.00	6099/BH306/2.2/S/1 D 2.20 m P6099/BH306/2.7/S/1		CL-S	ilty CLAY, low to m ravels.	edium plasticity, red/brov	vn, trace subangu	ı ılar		н			- - - - - -
			3-	2.00	D 2.70 m		Н	ole Terminated at	2.80 m							
																- - - - - - - - - - - - - - - - - - -
	(C) Copy	art (e n & Associate	S s Ply. Ltd.		Suite mail@	MARTENS & 201, 20 George S Phone: (02) 9476 martens.com.au	ASSOCIATES PTY LTE st. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marte) Australia 767 ns.com.au			En	gine BOF	erin REH	g Log - OLE

CLIENT	١	Naterbro	ok Life	style Resort				COMMENCED	20/09/2017	COMPLETED	20/09/20	17	REF BH307			
PROJECT Geotechnical and Acid S				nd Acid Sulfate Soils A	Asses	ssmen	t	LOGGED	MV	CHECKED	RE					
SITE	TE Bayview Golf Course, Bayview, NSW						GEOLOGY	Narrabeen Group	VEGETATION	Grass						
EQUIPMEN	NT			4WD truck-mounted hyd	raulic	drill rig	1	EASTING		RL SURFACE	8.8 m		DATUM AHD			
EXCAVATI	EXCAVATION DIMENSIONS Ø100 mm x 1.10 m depth							NORTHING		ASPECT	South		SLOPE 5%			
	Dri	lling		Sampling	_			•	F	ield Material D	escriptio	n				
METHOD PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS			
м	tered	_	8.80 0.20	-		<u> </u>	SM T	OPSOIL: Silty SAN	ID, brown, fine grained.			MD				
Ч Ч Ч Н	Not Encoun	- - 1	1 10	6099/BH307/0.25/S/1 D 0.25 m				layey SAND, medi	um grained, pale yellow(grey.	D	D - VD	RESIDUAL SUIL -			
		-	1.10				F	lole Terminated at	1.10 m				1.10: V-bit refusal on inferred very low			
MARTENS BOREHOLE P1706099BH01V01170265.GFJ <<0r> AMARTENS BOREHOLE P170609BH01V01170265.GFJ CurawingFile>> 12/10/2017 11:32 5.30.004 Daged Lab and In Shu Tool - DGD Lab. Martens 2.00 2016 F11-13 P										DEDORT NOT						
3.GLB LU	_				ОВІ											
	Сору	art (en & Associate	S es Pty. Ltd.			Suite mail@	201, 20 George S Phone: (02) 9476 martens.com.au	ASSOCIATES PTY LTE St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marte	, Australia 767 ns.com.au		En	gineering Log - BOREHOLE			
CL	IENT	Waterbrook Lifestyle Resort				COMMENCED	20/09/2017	COMPLETED	20/09	2017		REF	BH308			
--------------------	---------------------------	-----------------------------	---------------------	-------------------	--------------------------------	-----------	--------------	---------------	--	--	------------------------------------	----------	-----------	-------------------	------------------------------------	------------------------------------
PR	OJEC	т с	Geotech	nical ar	nd Acid Sulfate Soils A	sses	ssmen	t	LOGGED	MV	CHECKED	RE			1	
SIT	E	E	Bayview	Golf C	ourse, Bayview, NSW				GEOLOGY	Narrabeen Group	VEGETATION	Grass			- Sheet PROJECT	1 OF 1 NO. P1706099
EQ	UIPME	NT			4WD truck-mounted hydr	aulic	drill rig		EASTING		RL SURFACE	11.9 r	n		DATUM	AHD
EXC	CAVAT	'ION I	DIMENSI	ONS	Ø100 mm x 2.50 m depth				NORTHING		ASPECT	South	east		SLOPE	5%
	_	Dri	lling		Sampling	-		-		Fi	ield Material D	escrip	tion			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONDITION	DENSITY	STRU AD OBSE	CTURE AND DITIONAL ERVATIONS
ADN	м		-	11.90	6099/BH308/0.2/S/1 D 0.20 m		\bigotimes	SM	FILL: Silty SAND, fir	ie grained, brown, sub an	igular gravels.					-
	VH	countered	- 1	0.75 11.15	-		X	sc	FILL: Clayey SAND sandstone gravels.	fine to medium grained,	red/brown, with			0.75: \ boulde	′-bit refusal o r within soil p	n inferred sandstone
AD/T	н	Not End	-	10.70			<pre></pre>		SANDSTONE, med inferred extremely k strength bands, dist	ium to coarse grained, or ow and very low strength, inctly weathered.	ange/brown, white with medium	e,		WEAT	HERED ROO	ж——————— - -
	м														-	
	-		-	2.50					Hole Terminated at	2 50 m		-	_			
			-						noie reminated at	2.30 m						-
			3—													-
																-
11-13																-
00 2016														-		
Martens 2			4 —													-
1-13 Prj: 1			-													-
0 2016-1			_													-
artens 2.0															-	
O Lib: M			5 —													_
00 - DG			-													-
In Situ T			-													-
l Lab and			-													-
04 Datge			6 —													-
32 8.30.0			_													-
/2017 11:			-													-
>> 12/10.			-													
awingFile			7													-
PJ *{Dr			-													-
170925.G																
H01V01														-		
706099E														-		
HOLE P			-													-
VS BORE			-													-
MARTEI																
3LB Log					EXCAVATION LOG TO) BI	E REA	d in c	CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AN	id ae	BREVIA	TIONS	
MARTENS 2.00 LIB.(r	Copyr	art ight Martens	en & Associate	S is Pty. Ltd.			Suit mail(MARTENS & . e 201, 20 George S Phone: (02) 9476 @martens.com.au	ASSOCIATES PTY LTD St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter) Australia 767 ns.com.au		E	ngin BC	eerin REH	g Log - OLE

CL	IEN	NT	v	Vaterbro	ook Life	style Resort				COMMENCED	20/09/2017	COMPLETED	20/09/20	17		REF	BH309
PF	ROJ	JEC	тс	Geotech	nical ar	nd Acid Sulfate Soils A	Asse	ssmen	t	LOGGED	DO	CHECKED	RE				
SI	TE		E	ayview	Golf Co	ourse, Bayview, NSW				GEOLOGY	Narrabeen Group	VEGETATION	Grass			Sheet PROJECT	1 OF 1
EC	UIP	PMEN	NT			Hand Auger				EASTING		RL SURFACE	15.1 m			DATUM	AHD
EX	CA	VATI		DIMENSI	ONS	Ø75 mm x 0.50 m depth				NORTHING		ASPECT	South			SLOPE	2-5%
	_		Dri	ling		Sampling	_				F	ield Material D	escriptio	n	1		
METHOD	PENETRATION	RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY		Strue Adi Obse	CTURE AND DITIONAL RVATIONS
4	L	-M	tered	_	15.10	P6099/309/0.1/S/1 D	-		ML T	OPSOIL: SILT, low	liquid limit, brown, with fi	ne gravels.		St -	TOPSO	IL	
Ĩ		H	ot Encount		0.35 0.50	P6099/309/0.3/S/1 D 0.30 m P6099/309/0.4/S/1 D 0.40 m	F	¥/// ×	CL S	ilty CLAY, low plas	ticity, brown/red, with san 0.50 m	dstone gravels.	D	VSt	RESIDU 0.50: Ha	JAL SOIL	fusal on sandstone
			No	- 1											bundo v		-
				-													-
				-													-
				2													-
				-													-
															-		
11-13				-													-
ens 2.00 2016-				4													-
-11-13 Prj: Mart				-													-
rtens 2.00 2016																	-
- DGD Lib: Ma												-					
and In Situ Tool				-													-
04 Datgel Lab				6													-
17 11:32 8.30.0				-													-
ile>> 12/10/20				- 7													-
oJ < <drawingf< td=""><td colspan="5"></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drawingf<>																	
V01 170925.GF											-						
P1706099BH01		8										-					
BOREHOLE I				-													-
MARTEN				_													
00 LIB.GLB Log				<u>_</u>	0 10	EXCAVATION LOG T	O BI	E REA	D IN CO Suite	MARTENS & 201, 20 George S	TH ACCOMPANYING ASSOCIATES PTY LTE St. Hornsby, NSW 2077	REPORT NOT	ES AND	авві Е п	reviat gine	ions eerin	g Log -
MARTENS 2.		(C)	Copyri	ght Martens	& Associate	S is Pty. Ltd.			mail@	Phone: (02) 9476 martens.com.au	9999 Fax: (02) 9476 8 WEB: http://www.marte	767 ns.com.au			BO	REH	ĎLE

CL	IENT		Waterbro	ook Life	style Resort				COMMENCED	20/09/2017	COMPLETED	20/09/20	17		REF	BH311
PF	ROJEC	т	Geotech	nical ar	nd Acid Sulfate Soils A	sses	smen	t	LOGGED	DO	CHECKED	RE				
SI	TE		Bayview	Golf Co	ourse, Bayview, NSW				GEOLOGY	Narrabeen Group	VEGETATION	Grass			Sheet PROJECT	1 OF 1 NO. P1706099
EC		ENT			Hand Auger				EASTING		RL SURFACE	11.1 m			DATUM	AHD
EX	CAVA	ΓION	DIMENSI	ONS	Ø75 mm x 0.80 m depth				NORTHING		ASPECT	South			SLOPE	10%
		Dr	illing		Sampling	_		_	•	F	ield Material D	escriptio	n			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	RIPTION	MOISTURE	CONSISTENCY DENSITY		STRU ADI OBSE	CTURE AND DITIONAL ERVATIONS
		untered	-	11.10	P6099/311/0.1/D/1 D 0.10 m P6099/311/0 3/S/1 D		\bigotimes	ML	FILL: SILT, low liquio ine grained sand.	d limit, brown, with organi	c materials, trace	of	Vet	FILL		-
H	M-H	Enco		10.70	0.30 m P6099/311/0.5/S/1 D	_	Ŕ	ML	TOPSOIL: SILT, low	liquid limit, brown, trace	of clay, with fine to		H H	TOPSO	IL — — — ·	
		Not Not		0.80	- 0.50 m			CL	CLAY, low plasticity	brown/red, with fine to m	edium grained	-1		RESIDU		
			1						Hole Terminated at	0.80 m				0.80: Ha	and auger re ice.	efusal due high
			-													-
			-													-
																-
																-
			2													-
			-													-
			-													-
			-													-
			-													-
		3													-	
													-			
4-1-3			-													-
00 2016			-													-
rtens 2.0			4													
t Prj: Ma			-													-
6-11-13			-													-
2.00 201																-
artens															-	
LIB: N			5													-
0 - DGL			-													-
Situ To			-													-
b and Ir																-
atgel La			6-													_
0.004 D			_													-
32 8.3(-
2017 11.																
12/10/			-													-
1gFile>>			7-													-
<drawir< td=""><td></td><td></td><td> -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawir<>			-													-
S.GPJ <																-
117092															-	
3H01V0														-		
706099E			<u> </u>													-
OLE P1.			_													-
SOREH			-													-
TENS E			-													-
og MAH		<u> </u>			EXCAVATION LOG T	 0 BI	E RFA		ONJUCTION WI	THACCOMPANYING	REPORT NOT		ABRI	 REVIAT	IONS	
3 2.00 LIB.GLB L	/r	p	art	en	S			Suite	MARTENS & 201, 20 George S Phone: (02) 9476	ASSOCIATES PTY LTE St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8	Australia 767		En	gine	eerin	g Log -
MARTEN		C) Copy	right Martens	& Associate	es Pty. Ltd.			mail@)martens.com.au	WEB: http://www.marte	ns.com.au			BO	REH	OLE

CL	IENT.	-	Waterbro	/aterbrook Lifestyle Resort				COMMENCED	20/09/2017	COMPLETED	20/	/09/20	17		REF	BH312	
PR	ROJE	ст	Geotech	nical ar	nd Acid Sulfate Soils A	sses	ssmen	t	LOGGED	MV	CHECKED	RE				a	
SIT	ΓE		Bayview	Golf Co	ourse, Bayview, NSW				GEOLOGY	Narrabeen Group	VEGETATION	Gra	ass			PROJECT	1 OF 1 NO. P1706099
EQ	UIPM	ENT			4WD truck-mounted hydr	aulic	drill rig	1	EASTING		RL SURFACE	17.	2 m			DATUM	AHD
EX	CAVA		DIMENSI	ONS	Ø100 mm x 3.70 m depth	1	1		NORTHING		ASPECT	So	uth			SLOPE	5-10%
_	_	D	rilling		Sampling			z		F	ield Material D)esc	riptio	n			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATIO	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE	CONSISTENCY DENSITY		STRU AD OBSI	CTURE AND DITIONAL ERVATIONS
	м		-	17.20 0.30	6099/BH312/0.2/S/1 D		\bigotimes	SM I	FILL: Silty SAND, da	ark brown, fine grained, tr	ace shells and cl	ay.	D	MD	FILL		-
	L			1.20	6099/BH312/0.8/S/1 D 0.80 m				-ILL: Silty CLAY, m staining.	edium plasticity, dark bro	wn, trace red			St			- -
		bel	-	16.00	6099/BH312/1.4/S/1 D			CI	CLAY, medium plas	ticity, pale orange/brown					RESIDU	IAL SOIL	-
AD/V	м	Not Encounte	2	<u>1.65</u> 15.55	1.40 m			SC (Clayey SAND, fine f	o medium grained, pale r	red/brown.		м	D - VD			- - - -
			3-	<u>3.00</u> 14.20	6099/BH312/3.0/S/1 D 3.00 m				with clay bands.								-
0 2016-11-13			-	3.70					Hole Terminated at	3 70 m							
13 Prj: Martens 2.0	- <u>3.70</u> - <u>4</u> 														-		
artens 2.00 2016-11-																	-
u Tool - DGD Lib: M			5														
Lab and In Siti			-														-
:32 8.30.004 Datgel			6														-
ile>> 12/10/2017 11																	-
70925.GPJ < <drawingf< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawingf<>			-														-
1706099BH01V011			8														-
RTENS BOREHOLE			-														-
Log M/					EXCAVATION LOG TO) BI	EREA	D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	TES	AND	ABBI	REVIATI	ONS	
MARTENS 2.00 LIB.GLB		(C) Cop	art yright Martens	en & Associate	S rs Pty. Ltd.			Suite mail@	MARTENS & 201, 20 George S Phone: (02) 9476 martens.com.au	ASSOCIATES PTY LTE St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marte) Australia 767 ns.com.au			Ξn	gine BOI	erin REH	g Log - OLE

CL	IENT.	,	Waterbro	ook Life	style Resort				COMMENCED	20/09/2017	COMPLETED	20/0	9/20	17		REF	BH313
PF	ROJEC	т	Geotech	nical ar	nd Acid Sulfate Soils A	sse	ssmen	t	LOGGED	MV	CHECKED	RE					
Sľ	ΓE		Bayview	Golf Co	ourse, Bayview, NSW				GEOLOGY	Narrabeen Group	VEGETATION	Gras	ss			Sheet PROJECT	1 OF 1 NO. P1706099
EC	UIPME	NT			4WD truck-mounted hydr	aulio	drill rig	I	EASTING		RL SURFACE	7 m				DATUM	AHD
EX	CAVAT	ION	DIMENSI	ONS	Ø100 mm x 4.50 m deptr	ı			NORTHING		ASPECT	Sout	theas	st	;	SLOPE	9%
		Dr	illing		Sampling			7		F	ield Material D	escri	iptio	n			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATIO	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE	CONSISTENCY DENSITY		STRU AD OBSE	CTURE AND DITIONAL ERVATIONS
			_	7.00	6000/PH212/0 2/6/1 D			SM	TOPSOIL: Silty SAN	D, fine grained, brown.				MD	TOPSOIL	-	
	м		-	<u>0.30</u> 6.70	0.20 m 6099/BH313/0.5/S/1 D 0.50 m		×/× -	SC	Clayey SAND, fine t subangular sandsto	o medium grained, orang ne gravels.	ge/brown, with				RESIDU	AL SOIL	
			1	1.10			-							and VD			-
			-	5.90			· · · · · · · · · · · · · · · · · · ·		SANDSTONE, fine extremely low and v bands, distinctly we	to medium grained, red/b ery low strength, with me athered.	rown, inferred dium strength				WEATHE	ERED ROO	<u>ж </u>
		ered	-														-
AD/T		Encount	2										D				-
		Not	-														-
	H - 3- -														-		
-11-13														-			
tens 2.00 2016			4														-
6-11-13 Prj: Ma														-			
artens 2.00 201	4.50								Hole Terminated at	4.50 m							-
Subject of the second s													-				
b and In Situ Too			-														-
0.004 Datgel La			6														-
2017 11:32 8.3.			-														-
gFile>> 12/10/.			7-														-
.GPJ < <drawin< td=""><td colspan="7"></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawin<>																-	
01/01 170925.														-			
E P1706099Bh															-		
ENS BOREHOL			-														-
g MARTI						<u> </u>										ONE	
IARTENS 2.00 LIB.GLB L0	(n	Copy	art	en & Associate	S			Sui	MARTENS & . e 201, 20 George S Phone: (02) 9476 @martens.com.au	ASSOCIATES PTY LTE St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marte) Australia 767 ns.com.au	123 P		En	gine BOł	erin REH	g Log - OLE

CLI	IENT	Waterbrook Lifestyle Resort				COMMENCED	20/09/2017	COMPLETED	20/0	9/20	17	REF	BH314			
PR	OJEC	т	Geotech	nical ar	nd Acid Sulfate Soils A	sses	ssmen	t	LOGGED	MV	CHECKED	RE				4.05.4
SIT	E		Bayview	Golf Co	ourse, Bayview, NSW				GEOLOGY	Narrabeen Group	VEGETATION	Gras	ss		Sheet PROJEC	1 OF 1 CT NO. P1706099
EQ	JIPME	NT			4WD truck-mounted hydr	raulic	drill rig	1	EASTING		RL SURFACE	3.2 ו	n		DATUM	AHD
EXC	CAVAT	ION	DIMENSI	ONS	Ø100 mm x 2.50 m depth	ı			NORTHING		ASPECT	East	t		SLOPE	<2%
		Dri	illing		Sampling	_				F	ield Material D)escr	iptio	n		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE	CONSISTENCY DENSITY	STR A OB	UCTURE AND DDITIONAL SERVATIONS
	н		-	3.20 0.40	6099/BH314/0.2/S/1 D 0.20 m		\bigotimes	SM F	ILL: Silty SAND, fir ubangular igneous	ne grained, brown, trace f gravel, trace clay.	ine to medium				FILL	-
		ed	-	2.80 0.60 2.60	6099/BH314/0.3-0.6/CE CBR 0.30 m 6099/BH314/0.5/S/1 D 0.50 m			SP F SP F n	ILL: SAND, brown ILL: SAND, fine gr nedium subangular	, fine grained, trace subar ained, dark brown, with cl gravels.	ngular gravels.		D	D		-
2		ncounter	1	1.00 2.20	0.80 m		\bigotimes	SC F	ILL: Clayey SAND							-
AD	L	Not E	-	<u>1.50</u> 1.70	-			CI S	 andy CLAY, mediu	ım plasticity, dark brown.				MD		
			2		6099/BH314/2.0/S/1 D								М	St		-
			-	2.30	2.00 m											-
-				2.50	6099/BH314/2.4/S/1 D 2.40 m	F	—		lole Terminated at	2.50 m						
			-													-
	3-														-	
			-													-
11-13																-
ns 2.00 2(-													-
Prj: Marte			4													-
16-11-13																-
ns 2.00 20			-													-
Lib: Marte																
- DGD			-													-
n Situ Too			-													-
Lab and																-
14 Datgel			6													_
33 8.30.0																-
/2017 11:			-													-
>> 12/10			-													-
rawingFile			7													-
3PJ < <d.< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></d.<>			-													-
1 170925.0			-													-
06099BH01VU			8-													_
EHOLE P170			-													-
ARTENS BOR			-													-
B Log M.			1		EXCAVATION LOG TO	O BI	E REA	D IN CO	NJUCTION WI	TH ACCOMPANYING	REPORT NOT	TES A	ND	ABB	REVIATIONS	
RTENS 2.00 LIB.GLI				en & Associate	S Is Pty. Ltd.			Suite mail@	MARTENS & 201, 20 George S Phone: (02) 9476 martens.com.au	ASSOCIATES PTY LTE St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter) Australia 767 ns.com.au			En	gineerii BOREH	ng Log - IOLE
12	, u	,														

11 Attachment C – DCP 'N' Counts

Geotechnical and Acid Sulfate Soils Assessment: Proposed Seniors Living Development, Cabbage Tree Road, Bayview, NSW P1706099JR02V02 – November 2017 Page 79

Dynamic	: Cone	Penetro	ometer T	est Log		I ry SW 2159, Pr.: 1021 9	474 9999 Fox: 1021 9	476 8767.mai@ma	marte	
Site	•	Cobboge	Tree Road, Bay	view, NSW						
Clie	nt		PLANIX Projects	5						
Logge	d by		GMT/AB		Date L	ogged		20/05	5/2014	
Checke	ed by		GT		Date C	hecked				
Comm	ents									
Depth Interval					TEST DATA					
(m)	DCP 101	DCP 102	DCP 103	DCP 104	DCP 105	DCP 106	DCP 107	DCP 108	DCP 109	DCP 110
0.15	3	6	4	3	3	4	2	8	<u></u> 3	3
0.30	4	6	6	6	5	8	4	7	4	4
0.45	4	5	7	6	6	4	3		5	12
0.60	2	7	6	8	7	40+	2	(Bourfice @	4	13
0.75	4	11	9	9	6	Bounce @	2	\0.3Q.m	V 5	
0.90	4	5	40+	10	6	0.65 m	1/2		9	~ 13
1.05	8	10	Terminated @	15	10			\sim	15	1
1.20	10	13	0.95 m	10	22		VºL \	5 Ť	32	1 12)
1.35	5	13		10	40+		\mathcal{N}	r		113
1.50	y 10	15		10	Bounce @	$ \rightarrow $			1/4/) 40+
1.05	10	10		10	1.42 m	$H \rightarrow$	10		Jerneineren er	Jecunce w
1.00	12	12		12		\rightarrow	10	- 11-1		1.22 m
210	12	14		14	$\langle \rangle$		17	$ \land \land \land \land$		
2.10	10	20		20	$\uparrow \lor \checkmark$	\sim	14	f(f)	V	
2.40	17	27		40+ ()	110	>	- 12 0	5		
2.55	12	31		Terminoted @	>>>		127))		
2.70	14	40+		/mers	~~		1/2/	/		
2.85	13	Terminoted @	~ ^ (121	\geq		7435			
3.00	21	2.80 m	-C	111~		$\langle \langle \rangle$	T Start			
3.15	17		C(N)	112		2011	\bigtriangledown ,			
3.30	14	<	11/41	2~	~(0	50	18			
3.45	15	\sim	110		- (1)	\overline{a}	15			
3.60	14	$\langle \rangle$	112	/			12			
3.75	15 <	$\sim \sim$	32		UU		20			
3.90	1	\sim		\frown	(∇)		17			
4.05		$\langle \nabla \rangle$		$\langle 0 \rangle$	\sim		18			
4.20		\geq	$\langle \rangle$	15			17			
4.35	/ <u>k</u> i (()	\sim	210	$\langle 1 \rangle \langle 2 \rangle$			29			
4.50	_ < 13 ×		>>>>	$)) \vee$			21			
4.65	14		101				21			
4.80	19	$ \frown $	\backslash				22			
4.95	19	<u> </u>	\sim				27			
5.10	23	\sim	-				30			
5.25	23	$\Delta \uparrow V$					28			
5.40	- 2	$\sum $					40+			
5.55	(26)]						Bounce @			
5.70		<u> </u>					5.50 m			
5.85	- <u>40</u>									
6.00	23									
6.15	36									
	40+									
	ierminoted @									
	6.∡0 m									

Dynamic	: Cone	Penetro	meter T	est Log	Summa	I ry SW 2159, PH: 40214	676 9999 Fax: (02) 9	476 8767. mo3@m	<u>(marte</u>	ns.
					T					
Site	•	Cabbage	Tree Road, Bay	view, NSW	ł					
Cile	nt		PLANIX Project	5			-			
Logge	d by		GMT/AB		Date I	ogged		4.	6.14	
Checke	ed by		Ġī		Date C	hecked		24	.6.14	
Comm	ents						·			
					TEST DATA					
epth Interval (m)	DCP 201	DCP 202	DCP 203	DCP 204	DCP 205	DCP 206				
0.15	5	1	7	10	3	7				
0.30	9	9	7	40	9	40				
0.45	4	21	20		14				\geq	
0.40		20	20	Terminoted	20	Terminated			1	<u> </u>
0.75		10		A A	200	A				
0.00	12	10	42	0.2-	14	0.3-			\sim	<u> </u>
1.05	13	20	Terminetert	e.am		e.am	<u> </u>		*	\wedge
1.05		3	ierminated		15					
1.20	30	40	 2 − 1 −		18		(a)	\sim	0	1
1.35	13		0.7m		40		$\backslash \vee \land \backslash$	5		11
1.50	18	Terminated					$// \bigcirc$	-	10	$\left \right\rangle$
1.65	40	8			Terminated		117-		1////	11^{\vee}
		1.15m			8	())))~		$2 \setminus \setminus$	
	Terminated				1.2m	1 1	/			
	0				\sim			$\sim / /$	$\langle \rangle \sim$	
	1.65m				$\langle O \rangle$	$\overline{)}$		()))	\sim	
					10	< v		\mathbb{N}		
				\sim	1110			\sim		
					\vee \vee		\sim			<u> </u>
				\bigcirc	\sim		$\rightarrow) / / /$	/		
			~	1101			$\langle \langle \rangle \rangle$	-		
				\cdots		$\langle \cdot \rangle$	\sim			<u> </u>
			$\sim W$	$\wedge \vee \vee$		341	\sim			<u> </u>
		<	11414		A (($\leq \setminus $	~	L		<u> </u>
			() () ()	~	()					
		~~~	$////_{\sim}$			$\sim$				
		$ > \$	<u> </u>	<	O	$\sim$				
	5	$\langle \rangle \rangle$	>		$\langle \rangle \rangle \rangle \rangle \rangle \langle \rangle$	1				
				$\langle \rangle$	$\backslash \vee /$					
	201			VOL	$\sim$					
	2/10	$\sim$		110	>					
		~		1117						
			$\langle \rangle \rangle$	$D_{1}$						
	$\langle \rangle$		100/							
	~	$\wedge$	$\langle \langle \rangle$							
		6.5	$\rightarrow$							
		$\sim$	~							<u> </u>
	<u> </u>	()	2							
	$\cap$	$\langle \rangle \rangle \vee \langle \rangle$								<u> </u>
	$\sim 11$			l				l		<u> </u>
		$\sim$								L
		>								
	$\sim$									



#### Dynamic Cone Penetrometer Test Log Summary





martens

#### Attachment D – Geological Site Sections 12



Geotechnical and Acid Sulfate Soils Assessment: Proposed Seniors Living Development, Cabbage Tree Road, Bayview, NSW P1706099JR02V02 - November 2017 Page 83



	Martens & Associates Pty Ltd ABN 85 070 240 890		Environment   Water   Wastewater   Geotechnical   Civil   N
_	Drawn:	HN	
'n	Approved:	RE	INFERRED GENERALISED CROSS SECTION A-A' (REFER FIGURE 2 FOR LOCATION) Proposed Seniors Living Development, Cabbage Tree Road, Bayview, NSW
	Date:	27.08.2018	(Source: Marchese Partners, 2018)
ŀ	Scale:	NA	





	Martens & Associates Pty Ltd ABN 85 070 240 890		Environment   Water   Wastewater   Geotechnical   Civil   M
_	Drawn:	HN	
'n	Approved:	RE	INFERRED GENERALISED CROSS SECTION B-B' (REFER FIGURE 2 FOR LOCATION) Proposed Seniors Living Development, Cabbage Tree Road, Bayview, NSW
	Date:	27.08.2018	(Source: Marchese Partners, 2018)
	Scale:	NA	

# martens Management Drawing: FIGURE 9 File No: P1706099JR02V03

# 13 Attachment E – Preliminary Landslide Modelling Results





0.40	13	8	2	240	TIREE	0.30	14	5		
0.60	14	12	ŝ	241	TREE	0.40	10	8		
0.40	12	9	6	242	TREE	0.60	12	10		
0.60	18	10	l,	243	TREE	0.60	12	10		
& PHYS	CAL	CLIENT	PLANIX P	ROJECTS				REF	Na	_
ART OF B. BAYV	IEW.	PROPERTY	BAYVIEW	GOLF CLU	B, BAYVIEW	1			899	30
_,		DATUM	A.H.D.	SCALE	1:400 @ 6	1 DATE	APRIL 2	014 SHE	IT 145	of 1
				COAMAL		DWG5b		DEV	No.	

	0.50	12	7
A	0.30	3	Ð
3	MULTI 0.70	9	10
	MULTI 0.40	9	8
_	MULTI 0 40	10	12
	0.25	1 8	4
	0.50	14	6
	0.30	6	6
	0.60	10	6
	0.50	15	10
	0.25	6	7
~	0.25	8	7
-	0.25	3	7
	0.40	18	7
	9.40	1 8	7
	0.20	12	6
	0.20	12	6
	0.30	12	7
-	0.40	12	7
-	0.30	12	3
-	0.40	1 15	10
	0.20	11	7
Ň	0.30	11	8
-	0.30	1 10	7
	0.90	18	12
	0.30	10	3
	0.30	11	5
	0.50	12	10
	0.20	12	5
	0.60	12	8
	0.40	14	7
	0.60	14	\$
-	0.30	11	4
_	0.30	11	4
	0.30	11	4
	0.40	10	7
	0.30	8	8
	0.80	20	14
	0.40	15	6
	0.40	8	5
	0.50	12	8
	0.70	14	12
_	0.70	18	16
	0.30	10	7
	2x0.50	14	10
	0.60	16	8
_	0.40	14	6
	0.60	22	8
_	0.30	11	6
_	74UL110.60	8	10
-	0.35	12	9
-	0.60	12	8
-	0.40	14	8
_	0.40	14	8
	0.30	8	8
	0.40	74	10
-	0.20		5
-	0.30	:4	
	0.40	10	
-	0.40	13	
-	0.50	10	
-1	0.00	10	-
-	0.25		0
-	0.70	10 1	10
-	0.70	10	14
-	0.40	13	
-	0.60	10	12
_	0.30		14

151	TREE	0.50	12	à
152	TREE	0.30	9	6
153	TREE	0.70	18	13
164	TOPE	0.00	11	÷
125	TOTO	0.00	1 14	
155	i inteb	0.90	22	20
156	CASUARINA	0.50	21	3
157	TREE	0.80	20	12
158	TREE	1 1.20	1 20	18
159	CA SUARINA	0.20	1 15	6
160	TOCC	0.60	20	
100	TNEE	0.50	1 20	d
161	INCE	0,50	1 22	12
162	TREE	0.50	17	10
163	TREE	1.60	22	18
164	TREE	1.10	22	12
106	CARIGONIA	0.00	21	10
100	) CABURNA	5.00		
166	(NEE	2:0.40	16	6
167	TREE	0.70	22	10
168	TREE	6.40	10	3
169	TREE	0.50	12	3
170	TOPE	0.40	0	
174	TOCE	0.00		3
1/1	) (MEE	0.90	32	53
172	CASUARINA	0.30	20	3
173	TREE	0.20	. 8	4
174	TREE	0.30	7	5
175	TREE	0.50	10	5
176	TOTE	0.00		5
477	17075	0.80		10
1//	I NEE	5.30	12	4
178	TREE	0.30	12	4
179	TREE	0.20	9	6
180	TREE	0.80	21	3
181	TRFF	0.40	20	7
102	CALCH M DUTY	0.50	20	
102	CAGUAKINA	0.50	40	10
183	CASURRINA	0.40	20	10
184	TREE	0.30	13	(0
185	CASUARINA	0.60	14	10
186	PALIA	0.30	12	5
187	TPEE	6.80	14	
100	TOPC	0.80		
100	TOTO	0.80	20	14
189	THE	3.40	8	8
190	TREE	0,30	10	7
191	TREE	0.80	22	12
192	TREE	0.60	16	10
193	TREE	0.40	10	8
194	TREE	0.30	g	
195	CA 21 10 01314	0.30		
100	CABOARINA	0,30	14	3
196	1 Rga	0.80	16	10
197	TREE	0.40	12	12
198	TREE	0.40	8	10
199	TREE	0.40	12	8
200	TREE	0.30	11	6
201	TORS	0.00	10	
201	1 1000	0.20	10	-
202	J REE	0.40	18	10
203	TREE	0.50	18	:2
204	TREE	0.20	11	8
205	PALM	0.40	18	3
206	PALM	0.40	18	3
2017	24144	0.00		
208	T ALSA	0.40	10	
208	Produces	C.40	[8	3
209	PALS	0.40	18	3
210	PALM	0.40	18	3
211	PIALM	0.40	18	3
212	PALM	0.40	18	3
213	20104	0.40	10	
413	PALM	0.40	18	
214	MALM	0.40	18	3
215	FALM	0.40	18	3
215	PALM	0.40	18	3
217	TIREE	0.80	16	10
218	TREE	0.80	16	12
210	7200	0.00	10	12
410	1 TEL	0.00	10	12
200	A Let EE	0.80	T4	10
Z21	TRES	070	- 14	10
222	TIRES	1.00	41	12
223	TREE	C.60	12	10
224	TREE	0.50	11	10
225	TIDES	0.60		10
200	04.01.140.01/	0.00		.v
40	CASCIANINA	0.50	10	8
227	CASLIARINA	0.70	13	7
228	TIREE	0.60	12	10
229	TIRES	0.60	12	10
230	TIREF	0.90	14	12
231	TIZES	0.60	7	- E
200	11760	0.00		
232	TIREE	0.40	11	6
233	TIREE	0.70	11	8
	CASUARINA	0.40	10 1	4
234		0.60	14	9
234 235	TREE	* ***		
234 235	TIREE	0.60	10	11
234 235 236	TREE	0.50		
234 235 236 237	TIREE TIREE TIREE	0.50	18	15
234 235 236 237 238	TIREE TIREE CASUARINA	0.50	18	15 6
234 235 236 237 238 239	TIREE TIREE CASUARINA TIREE	0.50	18 10 10	15 6 8
234 235 236 237 238 239 240	TIREE TIREE CASUARINA TIREE TIREE	0 50 0 90 0.40 0.50 0.30	18 10 10 14	15 6 8 5
234 235 236 237 238 239 240 241	TREE TREE CASUARINA TREE TREE TREE	0.50 0.90 0.40 0.50 0.30 0.40	18 10 10 14	15 6 8 5 9
234 235 236 237 238 239 240 241 241 242	TREE TREE CASUARINA TREE TREE TREE TREE	0.50 0.90 0.40 0.50 0.30 0.40 0.60	18 10 10 14 10	15 6 8 5 9
234 235 236 237 238 239 240 241 242 243	TREE TREE CASUARINA TREE TREE TREE TREE TREE	0 50 0 90 0 40 0 50 0 30 0 40 0 60 0 60	18 10 14 10 12	15 6 8 5 9 10





CALCULATION SHEET

System P5, Form 3 Issued 6/5/06

# REFERENCE NO. 4199

ect S	<u>_66</u>	NO	Jell	pung			 				Pa	ige I	No.				D	ate	18	1.0	4							
Officer	Ada	141									M	A 01	fice	Sig	natu	re												
		1				;		- 1	1					1	т	1								· · · · ·			,	
							 						R.	4 (7	1)													
									ŧ		61		0-		<b>a</b>	6		ō	fi	PO		R						
					1						1		1	4.26	<b>.</b>		Poo	de.	10	150	·	-	-			*	Y	)
					-										-			9-10	20	6								98 F.A
			_			-								2	3%			-					1					land - Ad
	-			6	-								-	50	-		- 100				110	000	sind	200	-			-
															$\backslash$													-
						+	 									$\mathbf{h}$												~ -
				0	<b> </b>		 									9												-
																20	F	te	2 4	4 de	204							-
							 									-	ō	3					-					
							 					+	1				Υl				-							• •••
	++			Ť	-		 												2 	R	900	120	-				-	_
			2							-	+	-						*			-							
			6.00																									-
			3																1									w. 1
				5			 		_										68	-						_		
	++-								-	-									-	-								86,9124
																12:10					P	VC	p le	1				
			FE				 				-						1											-
8		P		50		·	 			+		-							IE 31								-	
8	2	45															•	$f_{+}$								-		
20	4	34			-				-									1										
3	81	2					 																					
2	2	2		8			 												a l									
2	4	6					 	-			-				-			-										
en		6																	11									
1 to							 										3				-						1	
(Inclusion of the second secon				5			 									-	a	-		_	Q	) 0	83	,04			_	
NCa											er el					1-80			ھ جۇ	in.						_		
No.								1	1								1	-		-							-	
4		-																										-
				50			 				_						_			a							6	9-
							<b>1</b> . <b>1</b> . Ma			a 20. cat i						-			7				annua -		$\rightarrow$	¢7		
- I -				-			 	+	ļ								4			1		1.00	1				_	1





#### Attachment F – Geotechnical Risk Calculations 14



Geotechnical and Acid Sulfate Soils Assessment: Proposed Seniors Living Development, Cabbage Tree Road, Bayview, NSW P1706099JR02V02 - November 2017 Page 91

andslide Hazard Evaluation Method based on Walker et al. in AGS Vol 42 No	- <b>Risk to L</b>	ife Assess	sment		m	arte	ens
Method ST-24 Revised 20.02.08					C		
	6/37	7 Leighton Place, Hor	nsby, NSW 2007, Ph: (0	2) 9476 9999 Fax: (02)	9476 8767, mail@ma	artens.com.au,www	.martens.com.au
OJECT DETAILS							
							D1 40 41 70
Project	- G	Geo	Reviewed	nent	T	Ret. No.	P1404179 23.05.14
			Reviewed			cicultu	20.00.14
P 1 : ENTER SITE AND DESIGN DATA							
		•	1				
ard Type	Soli	Creep					
		•					
Annual probability of landslide	0.00001						
	INDICATIVEVALUE	RECURRENCE	DESCR	IPTION	DESCRIPTOR	LEVEL	
	10-1	10 years	The event is expected	ed to occur over the	ALMOST CERTAIN	A	
	10 ⁻²	100 years	desig The event will prot	n inte. bably occur under	LIKELY	в	>
	10 ⁻³	1000 years	The event could oc	cur under tadverse	POSSIBLE	el /	
	10-4	10,000 years	The enent might occur circumstances or	r under very adverse er the design life	UNTREPA		$\searrow$
	10 ⁶	100,000 years	exceptional circumsta	nces over the design	RARE	E .	
	106	1,000,000 years	The event is inconcein the des	o vable or fanciful over ign life.	BARELY CREDIBLE	F	
Probability of spatial impact impacting building location (H) taking into account travel distance and travel direction	0.96				1 m		()
	FACTOR	DESC	RIPTION	UNITS	VALUE		$\langle \rangle \rangle \langle$
← W₂ → →	W,	Likely slid	e/fall width	m	180	$\langle \langle \rangle \rangle$	$\langle \rangle \rangle$
Allotment / Slide/Fall Investigation	W2	Width of allotment	/ investigation area	m	180	$\langle \rangle \rangle$	$\checkmark$
Area	W3	Width of dwelling	investigation element	m <	60	$\sim$	
← W, →	LIMO	Minimum'n	in-out length	m	$\left( \right) \right)$	2	
	LIND	Maximum ri	un-out length		200		
		Length of allotmen	t / investigation area	\ m \ [	270	1	
		Length of dw elling /	investigation element	_ <u>_</u>	50	1	
	LPMn	Probability of runo	ut being 0 - 1 mlong	(0 - 1)	0.05	1	
Dw elling / L ₃	L _{PMax}	Probability of runou	t being 0 - 200 m long	(0 - 1)	0.95		
	W _F	Likelihood of acros	s slope strike on risk ment	(0 - 1)	1.00		
	L _{F Mn}	Likelihood of dow element for minim	nsløpe strike on risk um run-out distance	(0 - 1)	0.19		
$(\circ) \setminus \bigtriangledown$	L _{F,Max}	Likelihood of dow	nslope strike on risk um run-out distance	(0 - 1)	1.00		
	(F Design	Likelihood of dow ns on risk element	ope strike (integrated) run-out distance	(0 - 1)	0.96	]	
s) Temporal spatial probability given the spatial impact	0.81	]					
		<u> </u>				-	
	FACTOR	DESCI	RIPTION	UNITS	VALUE		
$\sim ((\bigcirc)) \sim$	T ₁	Percentage of time	person(s) are on-site	m	90%		
	T ₂	Percentage of dw person(:	elling / element that s) occupy	m	90%	]	
Vulnerability of the individual (ie. probability of loss of D) life given the impact)	0.10	]					
	CASE	DESCI	RIPTION	RANGE IN DATA	RECOM MENDED VALUE	COMMENTS	
		If struck b	y a rockfall	0.1 - 0.7	0.50	May be injured to unlikely to cause of	out leath
	Person in open space	If buried	by debris	0.8 - 1.0	1.00	Death by asphy almost certain	xia I
		If not	buried	0.1 - 0.5	0.10	High chance of su	rvival
	Person in a vehicle	If vehicle is b	uried / crushed	0.9 - 1.0	1.00	Death is almost ce	rtain
	. er som in a venicie	If the vehicle i	s damaged only	0.0 - 0.3	0.30	High chance of su	rvival
		If the buildi	ng collapses	0.9 - 1.0	1.00	Dealth is almost ce	ertain
	Persons in building	If the building is inun the perso	dated with debris and on is buried	0.8 - 1.0	1.00	Death is highly like	ely
		If the debris strike	es the building only	0.0 - 0.1	0.05	Very high chance survival	e of
P 2 : RISK EVALUATION							
Risk (annual probability of loss of life of an individual)	7.77E-07	]					
· · · · · · · · · · · · · · · · · · ·							
k Assessment	Acc	ceptable risk for lo	oss of life for the pe	erson(s). Risk lev	el suitable for ne	w developments	à.



Geotechnical and Acid Sulfate Soils Assessment: Proposed Seniors Living Development, Cabbage Tree Road, Bayview, NSW.

Method based on Walker et al. in AGS Vol 42 No. 1 Method ST-24 Revised 20.02.08	March 2007				m	arte	ens
	6/37	Leighton Place, Hore	nsby, NSW 2007, Ph: (0:	2) 9476 9999 Fax: (02)	9476 8767, mail@ma	irtens.com.au,www	.martens.com.au
OJECT DETAILS							
Project		Geo	technical Assessn	nent	·······	Ref. No.	P1404179
Author	GI	MT	Reviewed	G	T	Created	23.05.14
P 1 : ENTER SITE AND DESIGN DATA							
			_				
zard Type	Slide I	Failure					
			4				
Annual probability of landslide	0.0001						
		PECI IPPENCE				,	
	INDICATIVEVALUE	INTERVAL	DESCRI The event is expecte	PTION	DESCRIPTOR	LEVEL	
	10.1	10 years	desig	n life.	ALMOST CERTAIN	A	>
	10'2	100 years	adverse conditions of The event could occ	over the design life.	LIKELY		
	10-3	1000 years	conditions over The enent might occur	the design life. under very adverse	POSSIBLE		$\mathbf{r}$
	10**	10,000 years	circumstances ov	er the design life.	UNLIKELY	L E	*
	10~	100,000 years	The event is inconceived	vable or fanciful over		F	
	10*	1,000,000 years	the des	ign life.	Children Ofenidee		
Probability of spatial impact impacting building location H) taking into account travel distance and travel direction	0.31		1	(O)	$\sum$		
← W₂►	FACTOR	DESCI	RIPTION	UNITS	VALUE		$\setminus \setminus \rangle$
	W,	Likely Slid	e/fall width	m	10	$\langle / \rangle \rangle$	$\bigtriangledown$
Allotment / Slide/Fall Investigation Area	W2	Width of allotment	/investigation area	m	214	$\left( \cup \right)$	
- w,	W3	Width of dwelling / i	investigation element		60 0	)	
Li Min		Minimum ru	nfout length	$\sim$			
	1 L'hear	Maximum ru	un-out length		200		
$W_3 \longrightarrow V_2$		Length of allotment	t / investigation area	//m/	270	-	
		Length of dw elling /	investigation element		50	-	
Dw elling/	L _{PMn}	Probability of runou	being 0 - Thiong	(0 - 1)	0.05		
Element	W (	Likelihood of acros	s slope strike on risk	(0 - 1)	0.33	-	
	Line O	Likelihood of dow r	ment/ patope strike on risk	(0 - 1)	0.19	-	
	LEMAN	Likelihood of dow r	nslope strike on risk	(0 - 1)	1.00		
$\mathcal{Y}\mathcal{V}$	L _{F Dealign}	Likelihood of dow nsl	ope strike (integrated)	(0 - 1)	0.96		
$\downarrow$		on hor donom				1	
S) Temporal spatial probability given the spatial impact	0.30						
	FACTOR	DESCF	RIPTION	UNITS	VALUE	1	
$\langle ( \cap ) \rangle$	Т,	Percentage of time p	person(s) are on-site	(0-1)	60%		
$\langle    \rangle$	T ₂	Percentage of dw person(s	elling / element that s) occupy	(0-1)	50%		
Vulnerability of the individual (ie. probability of loss of If e given/the impact)	0.10						
¥	CASE	DESCR	RIPTION		RECOMMENDED	COMMENTS	
		If struck b	v a rockfall	0.1 - 0.7	0.50	May be injured I	out
	Person in open	If buried	by debris	0.8 - 1.0	1.00	Death by asphy almost certeir	xia
	2 hqc6	lf not	buried	0.1 - 0.5	0.10	High chance of su	rvival
		If vehicle is bu	uried / crushed	0.9 - 1.0	1.00	Death is almost ce	ertain
	Person in a vehicle	If the vehicle is	s damaged only	0.0 - 0.3	0.30	High chance of su	rvival
		If the building	ng collapses	0.9 - 1.0	1.00	Dealth is almost cr	ertain
	Persons in building	If the building is inun the perso	dated with debris and in is buried	0.8 - 1.0	1.00	Death is highly life	kely
	-	If the debris strike	es the building only	0.0 - 0.1	0.05	Very high chanc survival	e of
P 2 : RISK EVALUATION							_
	0.127.5-						
Belling and the second se	9.42E-07						
T) Risk (annual probability of loss of life of an individual)							



Geotechnical and Acid Sulfate Soils Assessment: Proposed Seniors Living Development, Cabbage Tree Road, Bayview, NSW.

# 15 Attachment G – Laboratory Test Certificates





Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

110182

Client: Martens & Associates Pty Ltd 6/37 Leighton Place Hornsby NSW 2077

Attention: Adam Budji

### Sample log in details:

Your Reference:	P1404179 - Bayview Golf Club
No. of samples:	21 soils
Date samples received / completed instructions received	21/05/14 / 21/05/14

#### Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.* 

#### **Report Details:**

 Date results requested by: / Issue Date:
 29/05/14
 / 29/05/14

 Date of Preliminary Report:
 not issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

#### **Results Approved By:**

Jacinta/Hurst

Jacinta/Hurst Laboratory Manager



spocas						
Our Reference:	UNITS	110182-1	110182-2	110182-3	110182-4	110182-5
Your Reference		4179/101	4179/101	4179/101	4179/101	4179/101
Depth		0.5	1.0	2.5	3.5	4.5
Date Sampled		20/05/2014	20/05/2014	20/05/2014	20/05/2014	20/05/2014
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	23/05/2014	23/05/2014	23/05/2014	23/05/2014	23/05/2014
Date analysed	-	23/05/2014	23/05/2014	23/05/2014	23/05/2014	23/05/2014
рН ка	pH units	6.3	7.4	4.1	5.1	4.7
TAA pH 6.5	moles H ⁺ /t	<5	<5	54	41	41
s-TAA pH 6.5	%w/w S	<0.01	<0.01	0.09	0.07	0.07
рН ох	pH units	6.3	5.1	3.9	4.9	4.3
TPApH6.5	moles H ⁺ /t	<5	<5	70	92	85
s-TPA pH 6.5	%w/w S	<0.01	<0.01	0.11	0.15	0.14
TSA pH 6.5	moles H ⁺ /t	<5	<5	16	51	44
s-TSA pH 6.5	%w/w S	<0.01	<0.01	0.03	0.08	0.07
ANCE	%CaCO3	<0.05	<0.05	<0.05	<0.05	<0.05
a-ANCE	moles H ⁺ /t	<5	<5	<5	<5	<5
s-ANCe	%w/w S	<0.05	<0.05	<0.05	<0.05	<0.05
SKCI	%w/w S	<0.005	<0.005	0.03	0.01	<0.005
Sp	%w/w	0.01	0.01	0.03	0.06	0.03
Spos	%w/w	0.01	0.01	0.007	0.05	0.03
a-Spos	moles H ⁺ /t	6	7	<5	34	21
Саксі	%w/w	0.15	0.23	0.1	0.15	0.09
Сар	%w/w	0.17	0.25	0.08	0.18	0.1
Сал	%w/w	0.020	0.015	<0.005	0.023	<0.005
Мдксі	%w/w	0.021	0.025	0.023	0.020	0.016
Mgp	%w/w	0.023	0.030	0.023	0.026	0.017
MgA	%w/w	<0.005	0.005	<0.005	0.006	<0.005
Sнсі	%w/w S	[NT]	[NT]	0.028	[NT]	[NT]
SNAS	%w/w S	[NT]	[NT]	<0.005	[NT]	[NT]
a-Snas	moles H ⁺ /t	[NT]	[NT]	<5	[NT]	[NT]
s-Snas	%w/w S	[NT]	[NT]	<0.01	[NT]	[NT]
Fineness Factor	-	1.5	1.5	1.5	1.5	1.5
a-Net Acidity	moles H ⁺ /t	<10	<10	59	75	62
Limingrate	kg CaCO3/t	<0.75	<0.75	4.4	5.6	4.7
a-Net Acidity without ANCE	moles H ⁺ /t	NA	NA	NA	NA	NA
Liming rate without ANCE	kg CaCO3/t	NA	NA	NA	NA	NA

spocas						
Our Reference:	UNITS	110182-6	110182-7	110182-8	110182-9	110182-10
Your Reference		4179/102	4179/102	4179/103	4179/103	4179/104
Depth		1.0	2.0	1.5	2.0	0.5
Date Sampled		20/05/2014	20/05/2014	20/05/2014	20/05/2014	20/05/2014
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	23/05/2014	23/05/2014	23/05/2014	23/05/2014	23/05/2014
Date analysed	-	23/05/2014	23/05/2014	23/05/2014	23/05/2014	23/05/2014
рН ка	pH units	4.5	3.9	5.9	4.2	3.8
TAA pH 6.5	moles H ⁺ /t	31	49	<5	21	99
s-TAA pH 6.5	%w/w S	0.05	0.08	<0.01	0.03	0.16
pH ox	pH units	4.4	3.7	5.3	4.6	3.5
TPApH6.5	moles H ⁺ /t	20	57	<5	17	150
s-TPA pH 6.5	%w/w S	0.03	0.09	<0.01	0.03	0.25
TSA pH 6.5	moles H ⁺ /t	<5	9	<5	<5	56
s-TSA pH 6.5	%w/w S	<0.01	0.01	<0.01	<0.01	0.09
ANCE	%CaCO3	<0.05	<0.05	<0.05	<0.05	<0.05
a-ANCe	moles H ⁺ /t	<5	<5	<5	<5	<5
s-ANCe	%w/w S	<0.05	<0.05	<0.05	<0.05	<0.05
SKCI	%w/w S	0.006	0.01	<0.005	<0.005	0.005
SP	%w/w	0.01	0.02	0.005	0.007	0.01
Spos	%w/w	0.007	<0.005	0.005	0.006	0.009
a-Spos	moles H ⁺ /t	<5	<5	<5	<5	6
Саксі	%w/w	0.06	0.008	0.08	0.01	0.01
Сар	%w/w	0.06	0.007	0.1	0.02	0.01
Сал	%w/w	<0.005	<0.005	0.016	0.009	<0.005
Мдксі	%w/w	0.015	0.007	0.007	0.006	0.014
MgP	%w/w	0.015	0.006	0.007	0.007	0.015
Mga	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Sнсі	%w/w S	0.007	0.013	[NT]	<0.005	0.008
Snas	%w/w S	<0.005	<0.005	[NT]	<0.005	<0.005
a-Snas	moles H ⁺ /t	<5	<5	[NT]	<5	<5
s-Snas	%w/w S	<0.01	<0.01	[NT]	<0.01	<0.01
Fineness Factor	-	1.5	1.5	1.5	1.5	1.5
a-Net Acidity	moles H ⁺ /t	36	51	<10	26	110
Liming rate	kg CaCO3/t	2.7	3.8	<0.75	2.0	8.0
a-Net Acidity without ANCE	moles H ⁺ /t	NA	NA	NA	NA	NA
Liming rate without ANCE	kg CaCO3/t	NA	NA	NA	NA	NA

sPOCAS		110182-11	110182-12	110182-13	110182-14	110182-15
Your Reference		4179/105	4179/106	4179/106	4179/107	4179/107
Depth		1.0	0.5	1.5	1.0	1.5
Date Sampled		20/05/2014	20/05/2014	20/05/2014	20/05/2014	20/05/2014
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	23/05/2014	23/05/2014	23/05/2014	23/05/2014	23/05/2014
Date analysed	-	23/05/2014	23/05/2014	23/05/2014	23/05/2014	23/05/2014
рН ка	pH units	4.1	4.6	4.2	4.2	6.0
TAA pH 6.5	moles H ⁺ /t	79	26	34	42	<5
s-TAA pH 6.5	%w/w S	0.13	0.04	0.05	0.07	<0.01
pH ox	pH units	3.7	3.9	4.3	4.3	6.0
TPApH6.5	moles H ⁺ /t	90	<5	26	32	<5
s-TPA pH 6.5	%w/w S	0.14	<0.01	0.04	0.05	<0.01
TSA pH 6.5	moles H ⁺ /t	11	<5	<5	<5	<5
s-TSA pH 6.5	%w/w S	0.02	<0.01	<0.01	<0.01	<0.01
ANCE	%CaCO3	<0.05	<0.05	<0.05	<0.05	<0.05
a-ANCe	moles H ⁺ /t	<5	<5	<5	<5	<5
s-ANCe	%w/w S	<0.05	<0.05	<0.05	<0.05	<0.05
SKCI	%w/w S	<0.005	<0.005	0.01	0.01	<0.005
Sp	%w/w	0.009	0.01	0.01	0.02	0.01
Spos	%w/w	0.006	0.01	<0.005	0.005	0.006
a-Spos	moles H ⁺ /t	<5	7	<5	<5	<5
Саксі	%w/w	0.01	0.03	<0.005	0.06	0.1
Сар	%w/w	0.01	0.03	<0.005	0.06	0.10
Сад	%w/w	<0.005	<0.005	<0.005	<0.005	0.005
Мдксі	%w/w	0.011	0.007	0.006	0.022	0.018
MgP	%w/w	0.012	0.006	0.006	0.022	0.015
MgA	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Sнсі	%w/w S	0.005	[NT]	0.014	0.015	[NT]
Snas	%w/w S	<0.005	[NT]	<0.005	<0.005	[NT]
a-Snas	moles H ⁺ /t	<5	[NT]	<5	<5	[NT]
s-Snas	%w/w S	<0.01	[NT]	<0.01	<0.01	[NT]
Fineness Factor	-	1.5	1.5	1.5	1.5	1.5
a-Net Acidity	moles H ⁺ /t	83	33	37	46	<10
Liming rate	kg CaCO3/t	6.3	2.5	2.8	3.5	<0.75
a-Net Acidity without ANCE	moles H ⁺ /t	NA	NA	NA	NA	NA
Liming rate without ANCE	kg CaCO3/t	NA	NA	NA	NA	NA

sPOCAS Our Reference:	UNITS	110182-16	110182-17	110182-18	110182-19	110182-20
Your Reference		4179/107	4179/108	4179/109	4179/110	4179/110
Depth Date Sampled		3.5 20/05/2014	2.0	0.5	1.0	1.5 20/05/2014
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	23/05/2014	23/05/2014	23/05/2014	23/05/2014	23/05/2014
Date analysed	-	23/05/2014	23/05/2014	23/05/2014	23/05/2014	23/05/2014
рН ка	pH units	5.1	4.1	5.0	4.2	4.5
TAA pH 6.5	moles H ⁺ /t	16	51	21	61	39
s-TAA pH 6.5	%w/w S	0.03	0.08	0.03	0.1	0.06
pH ox	pH units	4.5	4.4	3.3	4.2	4.4
TPApH6.5	moles H ⁺ /t	<5	47	<5	45	35
s-TPA pH 6.5	%w/w S	<0.01	0.08	<0.01	0.07	0.06
TSA pH 6.5	moles H ⁺ /t	<5	<5	<5	<5	<5
s-TSA pH 6.5	%w/w S	<0.01	<0.01	<0.01	<0.01	<0.01
ANCE	%CaCO3	<0.05	<0.05	<0.05	<0.05	<0.05
a-ANCE	moles H ⁺ /t	<5	<5	<5	<5	<5
s-ANCE	%w/w S	<0.05	<0.05	<0.05	<0.05	<0.05
Skci	%w/w S	0.01	<0.005	<0.005	0.005	0.01
Sp	%w/w	0.02	0.006	0.02	0.01	0.02
Spos	%w/w	0.01	<0.005	0.02	0.007	0.007
a-Spos	moles H ⁺ /t	6	<5	11	<5	<5
Саксі	%w/w	0.1	0.008	0.14	0.04	0.06
Сар	%w/w	0.12	0.008	0.14	0.06	0.06
Сад	%w/w	0.019	<0.005	0.006	0.022	<0.005
Мдксі	%w/w	0.012	0.007	0.016	0.014	0.009
MgP	%w/w	0.018	0.008	0.012	0.033	0.018
MgA	%w/w	0.005	<0.005	<0.005	0.019	0.008
Sнсі	%w/w S	[NT]	<0.005	[NT]	0.009	0.016
Snas	%w/w S	[NT]	<0.005	[NT]	<0.005	0.006
a-Snas	moles H ⁺ /t	[NT]	<5	[NT]	<5	<5
s-Snas	%w/w S	[NT]	<0.01	[NT]	<0.01	<0.01
Fineness Factor	-	1.5	1.5	1.5	1.5	1.5
a-Net Acidity	moles H ⁺ /t	22	53	32	68	45
Liming rate	kg CaCO3/t	1.7	4.0	2.4	5.1	3.4
a-Net Acidity without ANCE	moles H ⁺ /t	NA	NA	NA	NA	NA
Liming rate without ANCE	kg CaCO3/t	NA	NA	NA	NA	NA

P1404179 - Ba	yview	Golf	Club
---------------	-------	------	------

sPOCAS		
Our Reference:	UNITS	110182-21
Your Reference		4179/110
Depth Deta Sampled		3.0
Type of sample		soil
Date prepared	_	23/05/2014
Date analysed	-	23/05/2014
pH ka	pH units	3.9
TAA pH 6.5	moles H⁺/t	61
s-TAA pH 6.5	%w/w S	0.1
A Ha	pH units	3.9
TPApH6.5	moles H ⁺ /t	60
s-TPA pH 6.5	%w/w S	0.1
TSA pH 6.5	moles H ⁺ /t	<5
s-TSA pH 6.5	%w/w S	<0.01
ANCE	%CaCO3	<0.05
a-ANCE	moles H ⁺ /t	<5
s-ANC _E	%w/w S	<0.05
Skci	%w/w S	0.04
Sp	%w/w	0.05
Spos	%w/w	0.01
a-Spos	moles H ⁺ /t	6
Саксі	%w/w	<0.005
Сар	%w/w	<0.005
Сал	%w/w	<0.005
Мдксі	%w/w	0.012
Mgp	%w/w	0.012
MgA	%w/w	<0.005
Shci	%w/w S	0.053
Snas	%w/w S	0.012
a-Snas	moles H ⁺ /t	5
s-Snas	%w/w S	<0.01
Fineness Factor	-	1.5
a-Net Acidity	moles H ⁺ /t	73
Liming rate	kg CaCO₃/t	5.5
a-Net Acidity without ANCE	moles H ⁺ /t	NA
Liming rate without ANCE	kg CaCO₃/t	NA

MethodID	Methodology Summary
Inorg-064	sPOCAS determined using titrimetric and ICP-AES techniques. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.

				C. I				-
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sPOCAS						Base II Duplicate II % RPD		
Date prepared	-			23/05/2 14	110182-1	23/05/2014  23/05/2014	LCS-1	23/05/2014
Date analysed	-			23/05/2 014	110182-1	23/05/2014  23/05/2014	LCS-1	23/05/2014
рН ка	pH units		Inorg-064	[NT]	110182-1	6.3  6.3  RPD:0	LCS-1	91%
TAA pH 6.5	moles H ⁺ /t	5	Inorg-064	<5	110182-1	<5  <5	LCS-1	109%
s-TAA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	110182-1	<0.01  <0.01	[NR]	[NR]
pH ox	pH units		Inorg-064	[NT]	110182-1	6.3  6.5  RPD:3	LCS-1	112%
TPA pH 6.5	moles H ⁺ /t	5	Inorg-064	ব্য	110182-1	<5  <5	LCS-1	89%
s-TPA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	110182-1	<0.01    <0.01	[NR]	[NR]
TSA pH 6.5	moles H ⁺ /t	5	Inorg-064	ব্য	110182-1	<5  <5	LCS-1	88%
s-TSA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	110182-1	<0.01  <0.01	[NR]	[NR]
ANCE	% CaCO3	0.05	Inorg-064	<0.05	110182-1	<0.05    <0.05	[NR]	[NR]
a-ANCE	moles H ⁺ /t	5	Inorg-064	-5	110182-1	<5  <5	[NR]	[NR]
s-ANCe	%w/w S	0.05	Inorg-064	<0.05	110182-1	<0.05  <0.05	[NR]	[NR]
Skci	%w/w S	0.005	Inorg-064	<0.005	110182-1	<0.005  <0.005	LCS-1	98%
Sp	%w/w	0.005	Inorg-064	<0.005	110182-1	0.01  0.01  RPD:0	LCS-1	89%
Spos	%w/w	0.005	Inorg-064	<0.005	110182-1	0.01  0.01  RPD:0	LCS-1	86%
a-Spos	moles H ⁺ /t	5	Inorg-064	ব্য	110182-1	6  6  RPD:0	LCS-1	86%
Саксі	%w/w	0.005	Inorg-064	<0.005	110182-1	0.15  0.15  RPD:0	LCS-1	100%
Сар	%w/w	0.005	Inorg-064	<0.005	110182-1	0.17  0.17  RPD:0	[NR]	[NR]
CaA	%w/w	0.005	Inorg-064	<0.005	110182-1	0.020  0.019  RPD:5	[NR]	[NR]
Мдксі	%w/w	0.005	Inorg-064	<0.005	110182-1	0.021  0.021  RPD:0	LCS-1	98%
MgР	%w/w	0.005	Inorg-064	<0.005	110182-1	0.023  0.023  RPD:0	[NR]	[NR]
MgA	%w/w	0.005	Inorg-064	<0.005	110182-1	<0.005  <0.005	[NR]	[NR]
Sнсı	%w/w S	0.005	Inorg-064	<0.005	[NT]	[NT]	[NR]	[NR]
Snas	%w/w S	0.005	Inorg-064	<0.005	[NT]	[NT]	[NR]	[NR]
a-Snas	moles H ⁺ /t	5	Inorg-064	న	[NT]	[NT]	[NR]	[NR]
s-Snas	%w/w S	0.01	Inorg-064	<0.01	[NT]	[NT]	[NR]	[NR]
Fineness Factor	-	1.5	Inorg-064	<1.5	110182-1	1.5  1.5  RPD:0	[NR]	[NR]
a-Net Acidity	moles H ⁺ /t	10	Inorg-064	<10	110182-1	<10  <10	LCS-1	87%
Liming rate	kg CaCO3 /t	0.75	Inorg-064	<0.75	110182-1	<0.75  <0.75	LCS-1	87%

|--|

		••						
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	cate Duplicate results Spike Sm# Spi Re		Spike % Recovery
POCAS						Base II Duplicate II %RPD		
a-Net Acidity without ANCE	moles H ⁺ /t	10	Inorg-064	<10	110182-1	NA    NA	[NR]	[NR]
Liming rate without ANCE	kg CaCO3	0.75	Inorg-064	<0.75	110182-1	NA    NA	[NR]	[NR]
QUALITYCONTROL		і 5 [	L Dup.Sm#		Duplicate	Spike Sm#	Spike % Reco	overy
SPOCAS				Base+1	Juplicate + %RP	0		
Date prepared	-	1	10182-11	23/05/2	014  23/05/201	4 LCS-2	23/05/201	4
Date analysed	-	1	10182-11	23/05/2	014  23/05/201	4 LCS-2	23/05/201	4
рН ка	pH uni	its 1	10182-11	4.1	4.1  RPD:0	LCS-2	93%	
TAA pH 6.5	moles H ⁺ /t	s 1	10182-11	79	79  RPD:0	LCS-2	125%	
s-TAA pH 6.5	%w/w	S 1	10182-11	0.13	0.13  RPD:0	[NR]	[NR]	
рН ох	pH uni	its 1	10182-11	3.7	3.8  RPD:3	LCS-2	112%	
TPApH6.5	moles H ⁺ /t	s   1	10182-11	90	95  RPD:5	LCS-2	87%	
s-TPA pH 6.5	%w/w	S 1	10182-11	0.14	0.15  RPD:7	[NR]	[NR]	
TSA pH 6.5	moles H ⁺ /t	s 1	10182-11	11	16  RPD:37	LCS-2	85%	
s-TSA pH 6.5	%w/w	S 1	10182-11	0.02	0.03  RPD:40	[NR]	[NR]	
ANCE	% CaCO	13	10182-11	<	0.05  <0.05	[NR]	[NR]	
a-ANCe	moles H ⁺ /t	5 1	10182-11		<5  <5	[NR]	[NR]	
s-ANCE	%w/w	S 1	10182-11	<(	0.05  <0.05	[NR]	[NR]	
SKCI	%w/w	S 1	10182-11	<0.	.005  <0.005	LCS-2	105%	
Sp	%w/\	w 1	10182-11	0.009	0.009  RPD:0	LCS-2	84%	
Spos	%w/\	w 1	10182-11	0.006	0.006  RPD:0	LCS-2	78%	
a-Spos	moles H⁺/t	s 1	10182-11		<5  <5	LCS-2	78%	
Саксі	%w/	w 1	10182-11	0.01	0.01  RPD:0	LCS-2	103%	
Сар	%w/	w 1	10182-11	0.01	0.01  RPD:0	[NR]	[NR]	
Сад	%w/	w 1	10182-11	<0.	.005  <0.005	[NR]	[NR]	
Мдксі	%w/v	w 1	10182-11	0.011	0.010  RPD: 10	LCS-2	98%	
Mgp	%w/	w 1	10182-11	0.012	0.012  RPD:0	[NR]	[NR]	
MgA	%w/\	w 1	10182-11	<0.	.005  <0.005	[NR]	[NR]	
Sнсі	%w/w	S 1	10182-11	0.005	0.005  RPD:0	[NR]	[NR]	
SNAS	%w/w	S 1	10182-11	<0.	.005  <0.005	[NR]	[NR]	
a-Snas	moles H ⁺ /t	s   1	10182-11		<5  <5	[NR]	[NR]	
s-Snas	%w/w	S 1	10182-11	<	0.01  <0.01	[NR]	[NR]	
Fineness Factor	-	1	10182-11	1.5	   1.5  RPD:0	[NR]	[NR]	
a-Net Acidity	moles	s 1	10182-11	83	83  RPD:0	LCS-2	80%	

|--|

		Client Reference	e: P1404179 - Bayvie	w Golf Club	
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
sPOCAS			Base + Duplicate + %RPD		
Liming rate	kg CaCO3 /t	110182-11	6.3  6.2  RPD:2	LCS-2	79%
a-Net Acidity without ANCE	moles H⁺/t	110182-11	NA    NA	[NR]	[NR]
Liming rate without ANCE	kg CaCO3 /t	110182-11	NA    NA	[NR]	[NR]
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate		
sPOCAS			Base + Duplicate + %RPD		
Date prepared	-	110182-21	23/05/2014  23/05/2014		
Date analysed	-	110182-21	23/05/2014  23/05/2014		
рН ка	pH units	110182-21	3.9  4.1  RPD:5		
TAA pH 6.5	moles H⁺/t	110182-21	61    54    RPD: 12		
s-TAA pH 6.5	%w/w S	110182-21	0.1  0.09  RPD:11		
pH ox	pH units	110182-21	3.9  3.8  RPD:3		
TPApH6.5	moles H ⁺ /t	110182-21	60    60    RPD: 0		
s-TPA pH 6.5	%w/w S	110182-21	0.1  0.1  RPD:0		
TSA pH 6.5	moles H ⁺ /t	110182-21	<5    6		
s-TSA pH 6.5	%w/w S	110182-21	<0.01  0.01		
ANCE	% CaCO3	110182-21	<0.05    <0.05		
a-ANCE	moles H ⁺ /t	110182-21	<5    <5		
s-ANCE	%w/w S	110182-21	<0.05  <0.05		
Sксı	%w/w S	110182-21	0.04  0.04  RPD:0		
Sp	%w/w	110182-21	0.05  0.05  RPD:0		
Spos	%w/w	110182-21	0.01    0.01    RPD: 0		
a-Spos	moles H ⁺ /t	110182-21	6  7  RPD:15		
Саксі	%w/w	110182-21	<0.005  <0.005		
Сар	%w/w	110182-21	<0.005    <0.005		
CaA	%w/w	110182-21	<0.005  <0.005		
Мдксі	%w/w	110182-21	0.012  0.012  RPD:0		
Мgр	%w/w	110182-21	0.012  0.012  RPD:0		
MgA	%w/w	110182-21	<0.005  <0.005		
Sнсі	%w/w S	110182-21	0.053  0.050  RPD:6		
Snas	%w/w S	110182-21	0.012  0.011  RPD:9		
a-Snas	moles H ⁺ /t	110182-21	5  5  RPD:0		
s-Snas	%w/w S	110182-21	<0.01    <0.01		
Fineness Factor	-	110182-21	1.5  1.5  RPD:0		

		Client Reference	e: P1404179 - Bayvie	w Golf Club
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	
sPOCAS			Base + Duplicate + % RPD	
a-Net Acidity	moles H⁺/t	110182-21	73  66  RPD:10	
Liming rate	kg CaCO3 /t	110182-21	5.5  5.0  RPD: 10	
a-Net Acidity without ANCE	moles H⁺/t	110182-21	NA    NA	
Liming rate without ANCE	kg CaCO3 /t	110182-21	NA    NA	

#### **Report Comments:**

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike** : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

#### Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 176282-A**

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Hamed Naghibi
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P1706099 - Contamination Investigation at Cabbage
Number of Samples	Additional Testing on 15 Soils
Date samples received	22/09/2017
Date completed instructions received	25/09/2017

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	03/10/2017				
Date of Issue	03/10/2017				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By Nick Sarlamis, Inorganics Supervisor Priya Samarawickrama, Senior Chemist

#### Authorised By

كع

David Springer, General Manager

Envirolab Reference: 176282-A Revision No: R00


sPOCAS + %S w/w						
Our Reference		176282-A-23	176282-A-24	176282-A-32	176282-A-34	176282-A-35
Your Reference	UNITS	6099 / BH302	6099 / BH302	6099 / BH306	6099 / BH306	6099 / BH306
Depth		0.3	0.9	0.3	1.4	2.2
Date Sampled		21/09/2017	21/09/2017	21/09/2017	21/09/2017	21/09/2017
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	26/09/2017	26/09/2017	26/09/2017	26/09/2017	26/09/2017
Date analysed	-	26/09/2017	26/09/2017	26/09/2017	26/09/2017	26/09/2017
pH _{kcl}	pH units	8.2	7.2	8.7	4.2	6.3
TAA pH 6.5	moles H+ /t	<5	<5	<5	46	<5
s-TAA pH 6.5	%w/w S	<0.01	<0.01	<0.01	0.07	<0.01
pH _{Ox}	pH units	6.7	6.4	7.8	3.8	5.3
TPA pH 6.5	moles H+ /t	<5	<5	<5	55	<5
s-TPA pH 6.5	%w/w S	<0.01	<0.01	<0.01	0.09	<0.01
TSA pH 6.5	moles H+ /t	<5	<5	<5	9	<5
s-TSA pH 6.5	%w/w S	<0.01	<0.01	<0.01	0.01	<0.01
ANCE	% CaCO₃	0.38	<0.05	0.56	<0.05	<0.05
a-ANC _E	moles H+ /t	75	<5	110	<5	<5
s-ANC _E	%w/w S	0.12	<0.05	0.18	<0.05	<0.05
SKCI	%w/w S	<0.005	<0.005	0.006	0.02	<0.005
Sp	%w/w	0.04	0.04	0.02	0.03	0.01
Spos	%w/w	0.03	0.04	0.02	0.01	0.01
a-Spos	moles H+ /t	21	22	11	7	6
Саксі	%w/w	0.41	0.31	0.31	0.02	0.12
Ca⊦	%w/w	0.28	0.20	0.51	0.02	0.13
Сад	%w/w	<0.005	<0.005	0.20	<0.005	0.012
Мдксі	%w/w	0.022	0.017	0.060	0.012	0.020
Mg _P	%w/w	0.027	0.020	0.086	0.013	0.016
Mg _A	%w/w	0.005	<0.005	0.020	<0.005	<0.005
Shci	%w/w S	<0.005	<0.005	<0.005	0.023	<0.005
Snas	%w/w S	<0.005	<0.005	<0.005	0.005	<0.005
a-Snas	moles H+ /t	<5	<5	<5	<5	<5
s-Snas	%w/w S	<0.01	<0.01	<0.01	<0.01	<0.01
Fineness Factor	-	1.5	1.5	1.5	1.5	1.5
a-Net Acidity	moles H ⁺ /t	<5	7	<5	56	10
s-Net Acidity	%w/w S	<0.01	0.01	<0.01	0.09	0.02
Liming rate	kg CaCO₃ /t	<0.75	<0.75	<0.75	4.2	0.76
s-Net Acidity without -ANCE	%w/w S	0.034	0.036	0.017	0.089	0.016
a-Net Acidity without ANCE	moles H+ /t	21	22	11	56	10
Liming rate without ANCE	kg CaCO₃ /t	1.6	1.7	0.81	4.2	0.76

sPOCAS + %S w/w				
Our Reference		176282-A-46	176282-A-47	176282-A-48
Your Reference	UNITS	6099 / BH312	6099 / BH313	6099 / BH313
Depth		1.4	0.2	0.5
Date Sampled		21/09/2017	21/09/2017	21/09/2017
Type of sample		soil	soil	soil
Date prepared	-	26/09/2017	26/09/2017	26/09/2017
Date analysed	-	26/09/2017	26/09/2017	26/09/2017
pH _{kcl}	pH units	7.7	5.2	4.5
TAA pH 6.5	moles H+/t	<5	<5	26
s-TAA pH 6.5	%w/w S	<0.01	<0.01	0.04
pH _{ox}	pH units	7.3	4.9	4.2
ТРА рН 6.5	moles H+/t	<5	<5	30
s-TPA pH 6.5	%w/w S	<0.01	<0.01	0.05
TSA pH 6.5	moles H+/t	<5	<5	<5
s-TSA pH 6.5	%w/w S	<0.01	<0.01	<0.01
ANCE	% CaCO ₃	0.44	<0.05	<0.05
a-ANC _E	moles H+/t	88	<5	<5
s-ANC _E	%w/w S	0.14	<0.05	<0.05
SKCI	%w/w S	<0.005	<0.005	<0.005
Sp	%w/w	0.01	0.006	0.005
Spos	%w/w	0.009	0.006	<0.005
a-Spos	moles H+/t	5	<5	<5
Саксі	%w/w	0.34	0.06	0.06
Ca⊦	%w/w	0.37	0.06	0.06
Сад	%w/w	0.040	<0.005	<0.005
Мдксі	%w/w	0.012	0.013	0.016
Mg₽	%w/w	0.018	0.012	0.016
Mg _A	%w/w	0.007	<0.005	<0.005
Shci	%w/w S	<0.005	<0.005	<0.005
SNAS	%w/w S	<0.005	<0.005	<0.005
a-Snas	moles H+/t	<5	<5	<5
s-Snas	%w/w S	<0.01	<0.01	<0.01
Fineness Factor	-	1.5	1.5	1.5
a-Net Acidity	moles H+/t	<5	8	29
s-Net Acidity	%w/w S	<0.01	0.01	0.05
Liming rate	kg CaCO₃ /t	<0.75	<0.75	2.2
s-Net Acidity without -ANCE	%w/w S	<0.01	0.012	0.046
a-Net Acidity without ANCE	moles H+/t	5.4	7.6	29
Liming rate without ANCE	kg CaCO ₃ /t	<0.75	<0.75	2.2

Misc Inorg - Soil						
Our Reference		176282-A-23	176282-A-24	176282-A-25	176282-A-26	176282-A-27
Your Reference	UNITS	6099 / BH302	6099 / BH302	6099 / BH303	6099 / BH303	6099 / BH304
Depth		0.3	0.9	0.2	0.5	0.2
Date Sampled		21/09/2017	21/09/2017	21/09/2017	21/09/2017	21/09/2017
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	27/09/2017	27/09/2017	27/09/2017	27/09/2017	27/09/2017
Date analysed	-	27/09/2017	27/09/2017	27/09/2017	27/09/2017	27/09/2017
pH 1:5 soil:water	pH Units	6.9	7.3	7.0	5.6	5.6
Chloride, Cl 1:5 soil:water	mg/kg	<10	10	23	27	20
Sulphate, SO4 1:5 soil:water	mg/kg	21	45	10	23	10

Misc Inorg - Soil						
Our Reference		176282-A-28	176282-A-30	176282-A-40	176282-A-44	176282-A-46
Your Reference	UNITS	6099 / BH304	6099 / BH305	6099 / BH309	6099 / BH312	6099 / BH312
Depth		0.5	0.3	0.4	0.2	1.4
Date Sampled		21/09/2017	21/09/2017	21/09/2017	21/09/2017	21/09/2017
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	27/09/2017	27/09/2017	27/09/2017	27/09/2017	27/09/2017
Date analysed	-	27/09/2017	27/09/2017	27/09/2017	27/09/2017	27/09/2017
pH 1:5 soil:water	pH Units	5.7	5.2	5.0	6.6	7.0
Chloride, Cl 1:5 soil:water	mg/kg	10	<10	<10	<10	10
Sulphate, SO4 1:5 soil:water	mg/kg	<10	<10	20	10	20

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-064	sPOCAS determined using titrimetric and ICP-AES techniques. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Alternatively determined by colourimetry/turbidity using Discrete Analyer.

QUALITY CONTROL: sPOCAS + %S w/w						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			26/09/2017	23	26/09/2017	26/09/2017		26/09/2017	
Date analysed	-			26/09/2017	23	26/09/2017	26/09/2017		26/09/2017	
pH _{kcl}	pH units		Inorg-064	[NT]	23	8.2	8.2	0	97	
TAA pH 6.5	moles H+/t	5	Inorg-064	<5	23	<5	<5	0	115	
s-TAA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	23	<0.01	<0.01	0	[NT]	
pH _{Ox}	pH units		Inorg-064	[NT]	23	6.7	6.8	1	102	
TPA pH 6.5	moles H+/t	5	Inorg-064	<5	23	<5	<5	0	101	
s-TPA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	23	<0.01	<0.01	0	[NT]	
TSA pH 6.5	moles H ⁺ /t	5	Inorg-064	<5	23	<5	<5	0	[NT]	
s-TSA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	23	<0.01	<0.01	0	[NT]	
ANCE	% CaCO₃	0.05	Inorg-064	<0.05	23	0.38	0.38	0	[NT]	
a-ANC _E	moles H+/t	5	Inorg-064	<5	23	75	75	0	[NT]	
s-ANC _E	%w/w S	0.05	Inorg-064	<0.05	23	0.12	0.12	0	[NT]	
Sксі	%w/w S	0.005	Inorg-064	<0.005	23	<0.005	<0.005	0	[NT]	
Sp	%w/w	0.005	Inorg-064	<0.005	23	0.04	0.04	0	[NT]	
Spos	%w/w	0.005	Inorg-064	<0.005	23	0.03	0.03	0	[NT]	
a-S _{POS}	moles H+/t	5	Inorg-064	<5	23	21	20	5	[NT]	
Саксі	%w/w	0.005	Inorg-064	<0.005	23	0.41	0.38	8	[NT]	
Ca _P	%w/w	0.005	Inorg-064	<0.005	23	0.28	0.34	19	[NT]	
Ca _A	%w/w	0.005	Inorg-064	<0.005	23	<0.005	<0.005	0	[NT]	
Mg _{KCl}	%w/w	0.005	Inorg-064	<0.005	23	0.022	0.020	10	[NT]	
Mg _P	%w/w	0.005	Inorg-064	<0.005	23	0.027	0.026	4	[NT]	
Mg _A	%w/w	0.005	Inorg-064	<0.005	23	0.005	0.007	33	[NT]	
S _{HCI}	%w/w S	0.005	Inorg-064	<0.005	23	<0.005	<0.005	0	[NT]	
Snas	%w/w S	0.005	Inorg-064	<0.005	23	<0.005	<0.005	0	[NT]	
a-S _{NAS}	moles H+/t	5	Inorg-064	<5	23	<5	<5	0	[NT]	
s-Snas	%w/w S	0.01	Inorg-064	<0.01	23	<0.01	<0.01	0	[NT]	
Fineness Factor	-	1.5	Inorg-064	<1.5	23	1.5	1.5	0	[NT]	
a-Net Acidity	moles H ⁺ /t	5	Inorg-064	<5	23	<5	<5	0	[NT]	
s-Net Acidity	%w/w S	0.01	Inorg-064	<0.01	23	<0.01	<0.01	0	[NT]	
Liming rate	kg CaCO₃/t	0.75	Inorg-064	<0.75	23	<0.75	<0.75	0	[NT]	
s-Net Acidity without -ANCE	%w/w S	0.01	Inorg-064	<0.01	23	0.034	0.032	6	[NT]	
a-Net Acidity without ANCE	moles H+/t	5	Inorg-064	<5	23	21	20	5	[NT]	

QUALITY (	Duplicate				Spike Re	covery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-064	<0.75	23	1.6	1.5	6	[NT]	[NT]

QUALITY	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	176282-A- 24
Date prepared	-			27/09/2017	23	27/09/2017	27/09/2017		27/09/2017	27/09/2017
Date analysed	-			27/09/2017	23	27/09/2017	27/09/2017		27/09/2017	27/09/2017
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	23	6.9	7.2	4	101	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	23	<10	<10	0	96	84
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	23	21	23	9	103	84

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Noter Cuidelines recommend that Thermetalerent Caliform, Faceal Enterganesi, & F. Cali lovels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

#### Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.



Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 Ph: (02) 9674 7711 | Fax: (02) 9674 7755 | Email: info@resourcelab.com.au

### **Test Report**

# Customer:Martens & Associates Pty LtdProject:P1706099

Job number: 17-0095

Report number: 1 Page: 1 of 2

Location: Seniors Living Development, Bayview Golf Course, Bayview, NSW

## **Point Load Strength Index**

Sampling method: Samples tested as received

Test method(s): AS 4133.4.1 Clause 3.2, 3.3

		Results							
Laboratory sample no.	12770	12771	12772	12773	12774				
Customer sample no.	6099/BH302/ 4.0m/R/1	6099/BH302/ 8.6m/R/1	6099/BH302/ 10.67m/R/1	6099/BH303/ 2.62m/R/1	6099/BH303/ 7.8m/R/1				
Sample depth	4.0m	8.6m	10.67m	2.62m	7.8m				
Date sampled	20-21/09/2017	20-21/09/2017	20-21/09/2017	20-21/09/2017	20-21/09/2017				
Date tested	05/10/2017	05/10/2017	05/10/2017	05/10/2017	05/10/2017				
Lithological description	SANDSTONE	SANDSTONE	SANDSTONE	SANDSTONE	SANDSTONE				
Diametral									
Moisture content condition	Moist	Moist	Moist	Moist	Moist				
Nature of weakness planes	Laminated	Laminated	Laminated	Laminated	Laminated				
Specimen size									
Length (mm)	121.5	105.0	125.6	131.0	177.0				
Diameter (mm)	51.6	51.6	51.6	51.6	51.3				
I _s (MPa)	0.094	0.19	0.044	0.034	0.13				
I _{s(50)} (MPa)	0.095	0.19	0.045	0.034	0.13				
Failure mode	Parallel to Laminae	Parallel to Laminae	Parallel to Laminae	Parallel to Laminae	Parallel to Laminae				
Axial									
Moisture content condition	Moist	Moist	Moist	Moist	Moist				
Nature of weakness planes	Laminated	Laminated	Laminated	Laminated	Laminated				
Specimen size									
Height (mm)	38.5	45.4	35.7	44.6	34.5				
Diameter (mm)	51.6	51.6	51.6	51.6	51.3				
I _s (MPa)	0.12	0.51	0.049	0.015	0.10				
I _{s(50)} (MPa)	0.12	0.53	0.049	0.016	0.098				
Failure mode	Perpendicular to Laminae	Perpendicular to Laminae	Perpendicular to Laminae	Perpendicular to Laminae	Perpendicular to Laminae				

Notes:

Approved Signatory:

Elatotana E. Maldonado

Date: 05/10/2017





Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 Ph: (02) 9674 7711 | Fax: (02) 9674 7755 | Email: info@resourcelab.com.au

### **Test Report**

# Customer: Martens & Associates Pty Ltd Project: P1706099

Job number: 17-0095 Report number: 1

Page: 2 of 2

Location: Seniors Living Development, Bayview Golf Course, Bayview, NSW

### **Point Load Strength Index**

Sampling method: Samples tested as received

Test method(s): AS 4133.4.1 Clause 3.2, 3.3

			Results	
Laboratory sample no.	12775	12776	12777	
Customer sample no.	6099/BH303/ 13.12m/R/1	6099/BH305/ 4.65m/R/1	6099/BH305/ 14.15m/R/1	
Sample depth	13.12m	4.65m	14.15m	
Date sampled	20-21/09/2017	20-21/09/2017	20-21/09/2017	
Date tested	05/10/2017	05/10/2017	05/10/2017	
Lithological description	SANDSTONE	CLAYSTONE	SILTSTONE	
Diametral				
Moisture content condition	Moist	Moist	Moist	
Nature of weakness planes	Laminated	n/a	Laminated	
Specimen size				
Length (mm)	123.9	148.0	186.5	
Diameter (mm)	51.4	51.0	50.8	
I _s (MPa)	0.44	0.047	0.076	
I _{s(50)} (MPa)	0.44	0.047	0.076	
Failure mode	Parallel to Laminae	Through fabric of specimen	Parallel to Laminae	
Axial				
Moisture content condition	Moist	Moist	Moist	
Nature of weakness planes	Laminated	n/a	Laminated	
Specimen size				
Height (mm)	44.4	36.2	40.8	
Diameter (mm)	51.4	51.0	50.8	
I _s (MPa)	0.49	0.046	0.067	
I _{s(50)} (MPa)	0.51	0.045	0.068	
Failure mode	Perpendicular to Laminae	Through fabric of specimen	Partial chip	

Notes:

Approved Signatory:

Elatotana E. Maldonado

Date: 05/10/2017



Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 Ph: (02) 9674 7711 | Fax: (02) 9674 7755 | Email: info@resourcelab.com.au

# **Test Report**

Customer:	Martens & Associates Pty Ltd
Project:	P1706099
Location:	Seniors Living Development, Bayview Golf Course,
	Bayview, NSW

#### Job number: 17-0095

Report number: 2

Page: 1 of 1

# **Soil Index Properties**

Sampling method: Samples tested as received

Test method(s): AS 1289.1.1, 2.1.1, 3.1.2, 3.2.1, 3.3.1 .3.4.1

	Results					
Laboratory sample no.	12778	12779				
Customer sample no.	6099/BH302/ 0.8m/S/1	6099/BH304/ 1.0m/S/1				
Date sampled	20-21/09/2017	20-21/09/2017				
Material description	sandy CLAY, trace of gravel, dark grey mottled brown	sandy CLAY, trace of gravel, brown				
Liquid limit (%)	29	44				
Plastic limit (%)	22	17				
Plasticity index (%)	7	27				
Linear shrinkage (%)	4.5	8.5				
Cracking / Curling / Crumbling	Cracking	Cracking				
Sample history	Air dried	Air dried				
Preparation	Dry sieved	Dry sieved				

**Approved Signatory:** 

Elatotana E. Maldonado

Date: 11/10/2017





**Sydney:** 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 **Ph:** (02) 9674 7711 | **Fax:** (02) 9674 7755 | **Email:** info@resourcelab.com.au

### **Test Report**

Customer:	Martens & Associates Pty Ltd	Job number: 17-0095
Project:	P1706099	Report number: 3
Location:	Seniors Living Development, Bayview Golf Course,	Page: 1 of 1
	Bayview, NSW	

# California Bearing Ratio

Sampling method: Samples tested as received

Test method(s): AS 1289.1.1, 2.1.1, 5.1.1, 6.1.1

	Results					
Laboratory sample no.	12780	12781				
Customer sample no.	6099/BH306/ 0.3-0.6m/CBR	6099/BH314/ 0.3-0.6m/CBR				
Date sampled	20-21/09/2017	20-21/09/2017				
Material description	CLAY, with sand, trace of gravel, mottled grey/ red/brown	SAND, with gravel, trace of silt and clay, brown				
Maximum dry density (t/m ³ )	1.84	1.82				
Optimum moisture content (%)	15.6	15.5				
Field moisture content (%)	n/a	n/a				
Oversize retained on 19.0mm sieve (%)	6	2				
Minimum curing time (hours)	48	48				
Dry density before soak (t/m ³ )	1.81	1.79				
Dry density after soak (t/m³)	1.78	1.78				
Moisture content before soak (%)	15.1	15.1				
Moisture content after soak (%)	17.3	16.3				
Moisture content after test - top 30mm (%)	18.4	16.9				
Moisture content after test - remaining depth (%)	16.1	15.1				
Density ratio before soaking (%)	98.5	98.0				
Moisture ratio before soaking (%)	97.0	97.5				
Period of soaking (days)	4	4				
Compactive effort	Standard	Standard				
Mass of surcharge applied (kg)	4.5	4.5				
Swell after soaking (%)	1.5	0.0				
Penetration (mm)	5.0	5.0				
CBR Value (%)	4.0	20				

Method of establishing plasticity level - Visual / tactile

**Approved Signatory:** 

Tolma .

E. Maldonado

Date: 11/10/2017



# Attachment H – Hillside Construction Guidelines (AGS, 2007)



#### PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007

#### **APPENDIX G - SOME GUIDELINES FOR HILLSIDE CONSTRUCTION**

#### **GOOD ENGINEERING PRACTICE**

#### POOR ENGINEERING PRACTICE

ADVICE		
GEOTECHNICAL	Obtain advice from a qualified, experienced geotechnical practitioner at early	Prepare detailed plan and start site works before
ASSESSMENT	stage of planning and before site works.	geotechnical advice.
PLANNING		
SITE PLANNING	Having obtained geotechnical advice, plan the development with the risk	Plan development without regard for the Risk.
DESIGN AND CONS		
DESIGN AND CON	Use flexible structures which incorporate properly designed brickwork, timber	Floor plans which require extensive cutting and
MOUNT DEGLON	or steel frames, timber or panel cladding.	filling.
HOUSE DESIGN	Consider use of split levels.	Movement intolerant structures.
	Use decks for recreational areas where appropriate.	
SITE CLEARING	Retain natural vegetation wherever practicable.	Indiscriminately clear the site.
ACCESS &	Satisfy requirements below for cuts, fills, retaining walls and drainage.	Excavate and fill for site access before
DRIVEWAIS	Driveways and parking areas may need to be fully supported on piers	geotechnical advice.
EARTHWORKS	Retain natural contours wherever possible.	Indiscriminatory bulk earthworks.
	Minimise depth.	Large scale cuts and benching.
CUTS	Support with engineered retaining walls or batter to appropriate slope.	Unsupported cuts.
	Provide drainage measures and erosion control.	Ignore drainage requirements
	Minimise height.	Loose or poorly compacted fill, which if it fails,
	Use clean fill materials and compact to engineering standards	onto property below
FILLS	Batter to appropriate slope or support with engineered retaining wall.	Block natural drainage lines.
	Provide surface drainage and appropriate subsurface drainage.	Fill over existing vegetation and topsoil.
		Include stumps, trees, vegetation, topsoil,
	Demons en stabilise heuldens usbiek men heur unseenstable rich	boulders, building rubble etc in fill.
& BOULDERS	Support rock faces where necessary	boulders
a boolbliks	Engineer design to resist applied soil and water forces.	Construct a structurally inadequate wall such as
RETAINING	Found on rock where practicable.	sandstone flagging, brick or unreinforced
WALLS	Provide subsurface drainage within wall backfill and surface drainage on slope	blockwork.
THEED	above.	Lack of subsurface drains and weepholes.
	Found within rock where practicable	Found on topsoil loose fill detached boulders
DOOTDIGG	Use rows of piers or strip footings oriented up and down slope.	or undercut cliffs.
FOOTINGS	Design for lateral creep pressures if necessary.	
	Backfill footing excavations to exclude ingress of surface water.	
	Engineer designed.	
SWIMMING POOLS	Provide with under drainage and gravity drain outlet where practicable	
5 WIMMING TOOLS	Design for high soil pressures which may develop on uphill side whilst there	
	may be little or no lateral support on downhill side.	
DRAINAGE		
	Provide at tops of cut and fill slopes.	Discharge at top of fills and cuts.
SUBEACE	Discharge to street drainage or natural water courses.	Allow water to pond on bench areas.
DOMACE	Line to minimise infiltration and make flexible where possible.	
	Special structures to dissipate energy at changes of slope and/or direction.	
	Provide filter around subsurface drain.	Discharge roof runoff into absorption trenches.
SUBSURFACE	Provide drain behind retaining walls.	
	Use flexible pipelines with access for maintenance. Prevent inflow of surface water	
	Usually requires pump-out or mains sewer systems: absorption trenches may	Discharge sullage directly onto and into slopes
SEPTIC &	be possible in some areas if risk is acceptable.	Use absorption trenches without consideration
JULLAGE	Storage tanks should be water-tight and adequately founded.	of landslide risk.
EROSION	Control erosion as this may lead to instability.	Failure to observe earthworks and drainage
CONTROL &	Kevegetate cleared area.	recommendations when landscaping.
	I ITE VISITS DUDING CONSTRUCTION	
DRAWINGS AND S	Building Application drawings should be viewed by gootachnical consultant	
SITE VISITS	Site Visits by consultant may be appropriate during construction/	
INSPECTION AND	MAINTENANCE BY OWNER	
OWNER'S	Clean drainage systems; repair broken joints in drains and leaks in supply	
RESPONSIBILITY	pipes.	
	Where structural distress is evident see advice.	
	If seepage observed, determine causes or seek advice on consequences.	

#### PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007



# EXAMPLES OF **POOR** HILLSIDE PRACTICE



# 17 Attachment I – General Geotechnical Recommendations



# Geotechnical Recommendations Important Recommendations About Your Site (1 of 2)

These general geotechnical recommendations have been prepared by Martens to help you deliver a safe work site, to comply with your obligations, and to deliver your project. Not all are necessarily relevant to this report but are included as general reference. Any specific recommendations made in the report will override these recommendations.

#### **Batter Slopes**

Excavations in soil and extremely low to very low strength rock exceeding 0.75 m depth should be battered back at grades of no greater than 1 Vertical (V) : 2 Horizontal (H) for temporary slopes (unsupported for less than 1 month) and 1 V : 3 H for longer term unsupported slopes.

Vertical excavation may be carried out in medium or higher strength rock, where encountered, subject to inspection and confirmation by a geotechnical engineer. Long term and short term unsupported batters should be protected against erosion and rock weathering due to, for example, stormwater run-off.

Batter angles may need to be revised depending on the presence of bedding partings or adversely oriented joints in the exposed rock, and are subject to on-site inspection and confirmation by a geotechnical engineer. Unsupported excavations deeper than 1.0 m should be assessed by a geotechnical engineer for slope instability risk.

Any excavated rock faces should be inspected during construction by a geotechnical engineer to determine whether any additional support, such as rock bolts or shotcrete, is required.

#### Earthworks

Earthworks should be carried out following removal of any unsuitable materials and in accordance with AS3798 (2007). A qualified geotechnical engineer should inspect the condition of prepared surfaces to assess suitability as foundation for future fill placement or load application.

Earthworks inspections and compliance testing should be carried out in accordance with Sections 5 and 8 of AS3798 (2007), with testing to be carried out by a National Association of Testing Authorities (NATA) accredited testing laboratory.

#### Excavations

All excavation work should be completed with reference to the Work Health and Safety (Excavation Work) Code of Practice (2015), by Safe Work Australia. Excavations into rock may be undertaken as follows:

- 1. <u>Extremely low to low strength rock</u> conventional hydraulic earthmoving equipment.
- 2. <u>Medium strength or stronger rock</u> hydraulic earthmoving equipment with rock hammer or ripping tyne attachment.

Exposed rock faces and loose boulders should be monitored to assess risk of block / boulder movement, particularly as a result of excavation vibrations. martens consulting engineers

#### Fill

Subject to any specific recommendations provided in this report, any fill imported to site is to comprise approved material with maximum particle size of two thirds the final layer thickness. Fill should be placed in horizontal layers of not more than 300 mm loose thickness, however, the layer thickness should be appropriate for the adopted compaction plant.

#### Foundations

All exposed foundations should be inspected by a geotechnical engineer prior to footing construction to confirm encountered conditions satisfy design assumptions and that the base of all excavations is free from loose or softened material and water. Water that has ponded in the base of excavations and any resultant softened material is to be removed prior to footing construction.

Footings should be constructed with minimal delay following excavation. If a delay in construction is anticipated, we recommend placing a concrete blinding layer of at least 50 mm thickness in shallow footings or mass concrete in piers / piles to protect exposed foundations.

A geotechnical engineer should confirm any design bearing capacity values, by further assessment during construction, as necessary.

#### **Shoring - Anchors**

Where there is a requirement for either soil or rock anchors, or soil nailing, and these structures penetrate past a property boundary, appropriate permission from the adjoining land owner must be obtained prior to the installation of these structures.

#### Shoring - Permanent

Permanent shoring techniques may be used as an alternative to temporary shoring. The design of such structures should be in accordance with the findings of this report and any further testing recommended by this report. Permanent shoring may include [but not be limited to] reinforced block work walls, contiguous and semi contiguous pile walls, secant pile walls and soldier pile walls with or without reinforced shotcrete infill panels. The choice of shoring system will depend on the type of structure, project budget and site specific geotechnical conditions.

Permanent shoring systems are to be engineer designed and backfilled with suitable granular

### Important Recommendations About Your Site (2 of 2)

material and free-draining drainage material. Backfill should be placed in maximum 100 mm thick layers compacted using a hand operated compactor. Care should be taken to ensure excessive compaction stresses are not transferred to retaining walls.

Shoring design should consider any surcharge loading from sloping / raised ground behind shoring structures, live loads, new structures, construction equipment, backfill compaction and static water pressures. All shoring systems shall be provided with adequate foundation designs.

Suitable drainage measures, such as geotextile enclosed 100 mm agricultural pipes embedded in free-draining gravel, should be included to redirect water that may collect behind the shoring structure to a suitable discharge point.

#### Shoring - Temporary

In the absence of providing acceptable excavation batters, excavations should be supported by suitably designed and installed temporary shoring / retaining structures to limit lateral deflection of excavation faces and associated ground surface settlements.

#### Soil Erosion Control

Removal of any soil overburden should be performed in a manner that reduces the risk of sedimentation occurring in any formal stormwater drainage system, on neighbouring land and in receiving waters. Where possible, this may be achieved by one or more of the following means:

- 1. Maintain vegetation where possible
- 2. Disturb minimal areas during excavation
- 3. Revegetate disturbed areas if possible

All spoil on site should be properly controlled by erosion control measures to prevent transportation of sediments off-site. Appropriate soil erosion control methods in accordance with Landcom (2004) shall be required.

#### **Trafficability and Access**

Consideration should be given to the impact of the proposed works and site subsurface conditions on trafficability within the site e.g. wet clay soils will lead to poor trafficability by tyred plant or vehicles.

Where site access is likely to be affected by any site works, construction staging should be organised such that any impacts on adequate access are minimised as best as possible.

#### **Vibration Management**

Where excavation is to be extended into medium or higher strength rock, care will be required when using a rock hammer to limit potential structural distress from excavation-induced vibrations where nearby structures may be affected by the works. To limit vibrations, we recommend limiting rock hammer size and set frequency, and setting the hammer parallel to bedding planes and along defect planes, where possible, or as advised by a geotechnical engineer. We recommend limiting vibration peak particle velocities (PPV) caused by construction equipment or resulting from excavation at the site to 5 mm/s (AS 2187.2, 2006, Appendix J). martens consulting engine

#### Waste – Spoil and Water

Soil to be disposed off-site should be classified in accordance with the relevant State Authority guidelines and requirements.

Any collected waste stormwater or groundwater should also be tested prior to discharge to ensure contaminant levels (where applicable) are appropriate for the nominated discharge location.

MA can complete the necessary classification and testing if required. Time allowance should be made for such testing in the construction program.

#### Water Management - Groundwater

If the proposed works are likely to intersect ephemeral or permanent groundwater levels, the management of any potential acid soil drainage should be considered. If groundwater tables are likely to be lowered, this should be further discussed with the relevant State Government Agency.

#### Water Management – Surface Water

All surface runoff should be diverted away from excavation areas during construction works and prevented from accumulating in areas surrounding any retaining structures, footings or the base of excavations.

Any collected surface water should be discharged into a suitable Council approved drainage system and not adversely impact downslope surface and subsurface conditions.

All site discharges should be passed through a filter material prior to release. Sump and pump methods will generally be suitable for collection and removal of accumulated surface water within any excavations.

#### **Contingency Plan**

In the event that proposed development works cause an adverse impact on geotechnical hazards, overall site stability or adjacent properties, the following actions are to be undertaken:

- 1. Works shall cease immediately.
- 2. The nature of the impact shall be documented and the reason(s) for the adverse impact investigated.
- 3. A qualified geotechnical engineer should be consulted to provide further advice in relation to the issue.

# 18 Attachment J – Notes About This Report



Geotechnical and Acid Sulfate Soils Assessment: Proposed Seniors Living Development, Cabbage Tree Road, Bayview, NSW P1706099JR02V02 – November 2017 Page 128

# Information

# Important Information About Your Report (1 of 2)

These notes have been prepared by Martens to help you interpret and understand the limitations of your report. Not all are necessarily relevant to all reports but are included as general reference.

#### **Engineering Reports - Limitations**

The recommendations presented in this report are based on limited investigations and include specific issues to be addressed during various phases of the project. If the recommendations presented in this report are not implemented in full, the general recommendations may become inapplicable and Martens & Associates accept no responsibility whatsoever for the performance of the works undertaken.

Occasionally, sub-surface conditions between and below the completed boreholes or other tests may be found to be different (or may be interpreted to be different) from those expected. Variation can also occur with groundwater conditions, especially after climatic changes. If such differences appear to exist, we recommend that you immediately contact Martens & Associates.

Relative ground surface levels at borehole locations may not be accurate and should be verified by onsite survey.

#### Engineering Reports - Project Specific Criteria

Engineering reports are prepared by qualified personnel. They are based on information obtained, on current engineering standards of interpretation and analysis, and on the basis of your unique project specific requirements as understood by Martens. Project criteria typically include the general nature of the project; its size and configuration; the location of any structures on the site; other site improvements; the presence of underground utilities; and the additional risk imposed by scope-of-service limitations imposed by the Client.

Where the report has been prepared for a specific design proposal (e.g. a three storey building), the information and interpretation may not be relevant if the design proposal is changed (e.g. to a twenty storey building). Your report should not be relied upon, if there are changes to the project, without first asking Martens to assess how factors, which changed subsequent to the date of the report, affect the report's recommendations. Martens will not accept responsibility for problems that may occur due to design changes, if not consulted.

#### **Engineering Reports – Recommendations**

Your report is based on the assumption that site conditions, as may be revealed through selective point sampling, are indicative of actual conditions throughout an area. This assumption often cannot be substantiated until project implementation has commenced. Therefore your site investigation report recommendations should only be regarded as preliminary. Only Martens, who prepared the report, are fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project If another party undertakes the develops. implementation of the recommendations of this report, there is a risk that the report will be misinterpreted and Martens cannot be held responsible for such misinterpretation.

mártens consulting engine

#### Engineering Reports – Use for Tendering Purposes

Where information obtained from investigations is provided for tendering purposes, Martens recommend that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document.

Martens would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

#### Engineering Reports - Data

The report as a whole presents the findings of a site assessment and should not be copied in part or altered in any way.

Logs, figures, drawings etc are customarily included in a Martens report and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel), desktop studies and laboratory evaluation of field samples. These data should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

#### Engineering Reports - Other Projects

To avoid misuse of the information contained in your report it is recommended that you confer with Martens before passing your report on to another party who may not be familiar with the background and purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.

#### Subsurface Conditions - General

Every care is taken with the report in relation to interpretation of subsurface conditions, discussion of geotechnical aspects, relevant standards and recommendations or suggestions for design and construction. However, the Company cannot always anticipate or assume responsibility for:

 Unexpected variations in ground conditions the potential will depend partly on test point Information

### Important Information About Your Report (2 of 2)

(eg. excavation or borehole) spacing and sampling frequency, which are often limited by project imposed budgetary constraints.

- Changes in guidelines, standards and policy or interpretation of guidelines, standards and policy by statutory authorities.
- o The actions of contractors responding to commercial pressures.
- Actual conditions differing somewhat from those inferred to exist, because no professional, no matter how qualified, can reveal precisely what is hidden by earth, rock and time.

The actual interface between logged materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions.

If these conditions occur, Martens will be pleased to assist with investigation or providing advice to resolve the matter.

#### Subsurface Conditions - Changes

Natural processes and the activity of man create subsurface conditions. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Reports are based on conditions which existed at the time of the subsurface exploration / assessment.

Decisions should not be based on a report whose adequacy may have been affected by time. If an extended period of time has elapsed since the report was prepared, consult Martens to be advised how time may have impacted on the project.

#### Subsurface Conditions - Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those that were expected from the information contained in the report, Martens requests that it immediately be notified. Most problems are much more readily resolved at the time when conditions are exposed, rather than at some later stage well after the event.

#### Report Use by Other Design Professionals

To avoid potentially costly misinterpretations when other design professionals develop their plans based on a Martens report, retain Martens to work with other project professionals affected by the report. This may involve Martens explaining the report design implications and then reviewing plans and specifications produced to see how they have incorporated the report findings.

#### Subsurface Conditions – Geo-environmental Issues

Your report generally does not relate to any findings, conclusions, or recommendations about the potential for hazardous or contaminated materials existing at the site unless specifically required to do so as part of Martens' proposal for works.

Specific sampling guidelines and specialist equipment, techniques and personnel are typically used to perform geo-environmental or site contamination assessments. Contamination can create major health, safety and environmental risks. If you have no information about the potential for your site to be contaminated or create an environmental hazard, you are advised to contact Martens for information relating to such matters.

#### Responsibility

Geo-environmental reporting relies on interpretation of factual information based on professional judgment and opinion and has an inherent level of uncertainty attached to it and is typically far less exact than the design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded.

To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from Martens to other parties but are included to identify where Martens' responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Martens closely and do not hesitate to ask any questions you may have.

#### Site Inspections

Martens will always be pleased to provide engineering inspection services for aspects of work to which this report relates. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site. Martens is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to a project, from design to construction.

# Soil Data

# Explanation of Terms (1 of 3)

#### Definitions

In engineering terms, soil includes every type of uncemented or partially cemented inorganic or organic material found in the ground. In practice, if the material does not exhibit any visible rock properties and can be remoulded or disintegrated by hand in its field condition or in water it is described as a soil. Other materials are described using rock description terms.

The methods of description and classification of soils and rocks used in this report are typically based on Australian Standard 1726 and the Unified Soil Classification System (USCS) – refer Soil Data Explanation of Terms (2 of 3). In general, descriptions cover the following properties strength or density, colour, structure, soil or rock type and inclusions.

#### Particle Size

Soil types are described according to the predominating particle size, qualified by the grading of other particles present (e.g. sandy CLAY). Unless otherwise stated, particle size is described in accordance with the following table.

Division Subdivision		Size (mm)	
BOULDERS		>200	
COBBLES		63 to 200	
	Coarse	20 to 63	
GRAVEL	Medium	6 to 20	
	Fine	2.36 to 6	
	Coarse	0.6 to 2.36	
SAND	Medium	0.2 to 0.6	
	Fine	0.075 to 0.2	
SILT		0.002 to 0.075	
CLAY		< 0.002	

#### **Plasticity Properties**

Plasticity properties of cohesive soils can be assessed in the field by tactile properties or by laboratory procedures.



#### **Moisture Condition**

- Dry Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented granular soils run freely through hands.
- Moist Soil feels cool and damp and is darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
- Wet As for moist but with free water forming on hands when handled.

Consistency	of	Cohesive	Soils
-------------	----	----------	-------

Cohesive soils refer to predominantly clay materials.

Term	Cu (kPa)	Approx. SPT "N"	Field Guide
Very Soft	<12	2	A finger can be pushed well into the soil with little effort. Sample extrudes between fingers when squeezed in fist.
Soft	12 - 25	2 – 4	A finger can be pushed into the soil to about 25mm depth. Easily moulded in fingers.
Firm	25 - 50 4 - 8		The soil can be indented about 5mm with the thumb, but not penetrated. Can be moulded by strong pressure in the figures.
Stiff	50 - 100	8 – 15	The surface of the soil can be indented with the thumb, but not penetrated. Cannot be moulded by fingers.
Very Stiff	ery 100 - 200 15 - 30		The surface of the soil can be marked, but not indented with thumb pressure. Difficult to cut with a knife. Thumbnail can readily indent.
Hard	Hard > 200 > 30		The surface of the soil can be marked only with the thumbnail. Brittle. Tends to break into fragments.
Friable	-	-	Crumbles or powders when scraped by thumbnail.

#### **Density of Granular Soils**

Non-cohesive soils are classified on the basis of relative density, generally from standard penetration test (SPT) or Dutch cone penetrometer test (CPT) results as below:

Relative Density	%	SPT 'N' Value* (blows/300mm)	CPT Cone Value (q _c MPa)	
Very loose	< 15	< 5	< 2	
Loose	15 - 35	5 - 10	2 - 5	
Medium dense	35 - 65	10 - 30	5 - 15	
Dense	65 - 85	30 - 50	15 - 25	
Very dense	> 85	> 50	> 25	

* Values may be subject to corrections for overburden pressures and equipment type.

#### **Minor Components**

Minor components in soils may be present and readily detectable, but have little bearing on general geotechnical classification. Terms include:

Term	Assessment	Proportion of Minor component In:
Trace of	Presence just detectable by feel or eye. Soil properties little or no different to general properties of primary component.	Coarse grained soils: < 5 % Fine grained soils: < 15 %
With some	Presence easily detectable by feel or eye. Soil properties little different to general properties of primary component.	Coarse grained soils: 5 - 12 % Fine grained soils: 15 - 30 %

# Soil Data

# Explanation of Terms (2 of 3)

martens consulting engineers

#### Symbols for Soils and Other



#### Unified Soil Classification Scheme (USCS)

FIELD IDENTIFICATION PROCEDURES (Excluding particles larger than 63 mm and basing fractions on estimated mass)						USCS	Primary Name									
than		irse ) mm.	rse 1 mm.	rse mm.	AN VELS or no es)	Wide range in gra	in size and s	substantial amounts of all intermediate particle sizes.	GW	Gravel						
is larger	VELS alf of coa ir than 2.0	CLE GRA (Little fine	Predominantly	one size or a	a range of sizes with more intermediate sizes missing	GP	Gravel									
OILS 63 mm	(e)	GRA e than h	VELS FINES ciable unt of es)	Non-plastic	c fines (for ic	dentification procedures see ML below)	GM	Silty Gravel								
AINED S ess than mm	aked e	Mo	GRA WITH (Appre amou	Plastic fi	ines (for ider	ntification procedures see CL below)	GC	Clayey Gravel								
ARSE GR aterial le 0.075	to the n	arse .0 mm	AN NDS or no es)	Wide range in g	grain sizes ar	nd substantial amounts of intermediate sizes missing.	SW	Sand								
COA More than 50 % of ma mallest particle visible t	e visible	JDS alf of coa er than 2	CLE SAN (Little fine	Predominantly	one size or a	a range of sizes with some intermediate sizes missing	SP	Sand								
	SAN re than h on is small	NDS FINES sciable unt of es)	Non-plastic	c fines (for ic	dentification procedures see ML below)	SM	Silty Sand									
	smallest	Mor fractio	SAN WITH (Appre amou fin	Plastic fi	Plastic fines (for identification procedures see CL below)			Clayey Sand								
	the		IDENTIFICATION PROCEDURES ON FRACTIONS < 0.2 MM													
53 mm is	(A 0.075 mm particle is abou	DRY STRENG (Crushing Characteristi	TH DILATANC cs)	Y TOUGHNESS	5	DESCRIPTION	USCS	Primary Name								
ILS s than 6 mm		(A 0.075 mm particle	None to Lo	Ow Quick to Slow	None	Inorg	ganic silts and very fine sands, rock flour, silty or clayey fine sands with slight plasticity	ML	Silt							
ED SOI rial les 0.075 1			(A 0.075 mm p	(A 0.075 mm p	(A 0.075 mm p	Medium t High	o None	Medium	In gra	organic clays of low to medium plasticity 1, avely clays, sandy clays, silty clays, lean clays	CL ²	Clay				
E GRAIN of mate ler than						(A 0.075	(A 0.075	(A 0.075	(A 0.075	Low to Medium	Slow to Ve Slow	ery Low	Orga	anic slits and organic silty clays of low plasticity	OL	Organic Silt
FINE an 50 % - small								Low to Medium	Slow to Ve Slow	ery Low to Medium	Ino	rganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	MH	Silt		
ore the		High	None	High		Inorganic clays of high plasticity, fat clays	СН	Clay								
W		Medium t High	o None	Low to Medium	(	Organic clays of medium to high plasticity	OH	Organic Silt								
HIGHLY ORGANI SOILS	, С	Rea	adily identified by	r colour, odour, sp	ongy feel	and frequently by fibrous texture	Pt	Peat								
Notes: 1. 1 2. 0	Notes: 1. Low Plasticity – Liquid Limit W _L < 35 % Medium Plasticity – Liquid limit W _L 35 to 60 % High Plasticity - Liquid limit W _L > 60 %. 2. CI may be adopted for clay of medium plasticity to distinguish from clay of low plasticity.															

# Soil Data

# Explanation of Terms (3 of 3)

mártens consulting engineers

Soil Agricultural Classification Scheme

In some situations, such as where soils are to be used for effluent disposal purposes, soils are often more appropriately classified in terms of traditional agricultural classification schemes. Where a Martens report provides agricultural classifications, these are undertaken in accordance with descriptions by Northcote, K.H. (1979) *The factual key for the recognition of Australian Soils*, Rellim Technical Publications, NSW, p 26 - 28.

Symbol	Field Texture Grade	Behaviour of moist bolus	Ribbon length	Clay content (%)
S	Sand	Coherence nil to very slight; cannot be moulded; single grains adhere to fingers	0 mm	< 5
LS	Loamy sand	Slight coherence; discolours fingers with dark organic stain	6.35 mm	5
CLS	Clayey sand	Slight coherence; sticky when wet; many sand grains stick to fingers; discolours fingers with clay stain	6.35mm - 1.3cm	5 - 10
SL	Sandy loam	Bolus just coherent but very sandy to touch; dominant sand grains are of medium size and are readily visible	1.3 - 2.5	10 - 15
FSL	Fine sandy loam	Bolus coherent; fine sand can be felt and heard	1.3 - 2.5	10 - 20
SCL-	Light sandy clay loam	Bolus strongly coherent but sandy to touch, sand grains dominantly medium size and easily visible	2.0	15 - 20
L	Loam	Bolus coherent and rather spongy; smooth feel when manipulated but no obvious sandiness or silkiness; may be somewhat greasy to the touch if much organic matter present	2.5	25
Lfsy	Loam, fine sandy	Bolus coherent and slightly spongy; fine sand can be felt and heard when manipulated	2.5	25
SiL	Silt Ioam	Coherent bolus, very smooth to silky when manipulated	2.5	25 + > 25 silt
SCL	Sandy clay loam	Strongly coherent bolus sandy to touch; medium size sand grains visible in a finer matrix	2.5 - 3.8	20 - 30
CL	Clay loam	Coherent plastic bolus; smooth to manipulate	3.8 - 5.0	30 - 35
SiCL	Silty clay loam	Coherent smooth bolus; plastic and silky to touch	3.8 - 5.0	30- 35 + > 25 silt
FSCL	Fine sandy clay loam	Coherent bolus; fine sand can be felt and heard	3.8 - 5.0	30 - 35
SC	Sandy clay	Plastic bolus; fine to medium sized sands can be seen, felt or heard in a clayey matrix	5.0 - 7.5	35 - 40
SiC	Silty clay	Plastic bolus; smooth and silky	5.0 - 7.5	35 - 40 + > 25 silt
LC	Light clay	Plastic bolus; smooth to touch; slight resistance to shearing	5.0 - 7.5	35 - 40
LMC	Light medium clay	Plastic bolus; smooth to touch, slightly greater resistance to shearing than LC	7.5	40 - 45
MC	Medium clay	Smooth plastic bolus, handles like plasticine and can be moulded into rods without fracture, some resistance to shearing	> 7.5	45 - 55
HC	Heavy clay	Smooth plastic bolus; handles like stiff plasticine; can be moulded into rods without fracture; firm resistance to shearing	> 7.5	> 50

# Rock Data

# Explanation of Terms (1 of 2)

METAMORPHIC ROCK

martens consulting engineers

# Symbols for Rock SEDIMENTARY ROCK

000	BRECCIA		COAL	~~~	SLATE, PHYLLITE, SCHIST
0000	CONGLOMERATE		LIMESTONE	$\langle \rangle \rangle$	GNEISS
0000	CONGLOMERATIC SANDSTONE	ಲ್ಲೆಲ್ಲಿ	LITHIC TUFF		METASANDSTONE
	sandstone/quartzite			***	METASILTSTONE
	SILTSTONE	IGNEOUS RO	оск	$\approx$	METAMUDSTONE
	MUDSTONE/CLAYSTONE		GRANITE		
	SHALE	Х, <u>с</u> , х,	DOLERITE/BASALT		
Definitions					

Descriptive terms used for Rock by Martens are based on AS1726 and encompass rock substance, defects and mass.

Rock Substance	In geotechnical engineering terms, rock substance is any naturally occurring aggregate of minerals and organic matter which cannot be disintegrated or remoulded by hand in air or water. Other material is described using soil descriptive terms. Rock substance is effectively homogeneous and may be isotropic or anisotropic.
Rock Defect	Discontinuity or break in the continuity of a substance or substances.
Rock Mass	Any body of material which is not effectively homogeneous. It can consist of two or more substances without defects, or

Degree of Weathering

Rock weathering is defined as the degree of decline in rock structure and grain property and can be determined in the field.

Term	Symbol	Definition
Residual soil ¹	Rs	Soil derived from the weathering of rock. The mass structure and substance fabric are no longer evident. There is a large change in volume but the soil has not been significantly transported.
Extremely weathered ¹	EW	Rock substance affected by weathering to the extent that the rock exhibits soil properties - i.e. it can be remoulded and can be classified according to the Unified Classification System, but the texture of the original rock is still evident.
Highly weathered ²	HW	Rock substance affected by weathering to the extent that limonite staining or bleaching affects the whole of the rock substance and other signs of chemical or physical decomposition are evident. Porosity and strength may be increased or decrease compared to the fresh rock usually as a result of iron leaching or deposition. The colour and strength of the original rock substance is no longer recognisable.
Moderately weathered ²	MW	Rock substance affected by weathering to the extent that staining extends throughout the whole of the rock substance and the original colour of the fresh rock is no longer recognisable.
Slightly weathered	SW	Rock substance affected by weathering to the extent that partial staining or discolouration of the rock substance usually by limonite has taken place. The colour and texture of the fresh rock is recognisable.
Fresh	FR	Rock substance unaffected by weathering

Notes:

1 Rs and EW material is described using soil descriptive terms.

2. The term "Distinctly Weathered" (DW) may be used to cover the range of substance weathering between EW and SW

one or more substances with one or more defects.

#### **Rock Strength**

Rock strength is defined by the Point Load Strength Index (Is 50) and refers to the strength of the rock substance in the direction normal to the loading. The test procedure is described by the International Society of Rock Mechanics.

Term	ls (50) MPa	Field Guide	
Very low	>0.03 ≤0.1	May be crumbled in the hand. Sandstone is 'sugary' and friable.	VL
Low	>0.1 ≤0.3	A piece of core 150mm long x 50mm diameter may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.	L
Medium	>0.3 ≤1.0	A piece of core 150mm long x 50mm diameter can be broken by hand with considerable difficulty. Readily scored with a knife.	Μ
High	>1 ≤3	A piece of core 150mm long x 50mm diameter cannot be broken by unaided hands, can be slightly scratched or scored with a knife.	Н
Very high	>3 ≤10	A piece of core 150mm long x 50mm diameter may be broken readily with hand held hammer. Cannot be scratched with pen knife.	VH
Extremely high	>10	A piece of core 150mm long x 50mm diameter is difficult to break with hand held hammer. Rings when struck with a hammer.	EH

# Rock Data

# Explanation of Terms (2 of 2)

martens consulting engineers

#### Degree of Fracturing

This classification applies to diamond drill cores and refers to the spacing of all types of natural fractures along which the core is discontinuous. These include bedding plane partings, joints and other rock defects, but exclude fractures such as drilling breaks (DB) or handling breaks (HB).

Term	Description
Fragmented	The core is comprised primarily of fragments of length less than 20 mm, and mostly of width less than core diameter.
Highly fractured	Core lengths are generally less than 20 mm to 40 mm with occasional fragments.
Fractured	Core lengths are mainly 30 mm to 100 mm with occasional shorter and longer sections.
Slightly fractured	Core lengths are generally 300 mm to 1000 mm, with occasional longer sections and sections of 100 mm to 300 mm.
Unbroken	The core does not contain any fractures.

#### **Rock Core Recovery**

TCR = Total Core Recovery	SCR = Solid Core Recovery	RQD = Rock Quality Designation
$=\frac{\text{Length of core recovered}}{\text{Length of core run}} \times 100\%$	$=\frac{\sum \text{Length of cylindrical core recovered}}{\text{Length of core run}} \times 100\%$	$=\frac{\sum \text{Axial lengths of core} > 100 \text{ mm long}}{\text{Length of core run}} \times 100\%$

#### **Rock Strength Tests**

- Point load strength Index (Is50) axial test (MPa)
- Point load strength Index (Is50) diametral test (MPa)
- Unconfined compressive strength (UCS) (MPa)

#### **Defect Type Abbreviations and Descriptions**

Defect Type (with inclination given)		Planarity		Roughne	SS	
BP	Bedding plane parting	PI	Planar	Pol	Polished	
FL	Foliation	Cu	Curved	SI	Slickensided	
CL	Cleavage	Un	Undulating	Sm	Smooth	
JT	Joint	St	Stepped	Ro	Rough	
FC	Fracture	Ir	Irregular	VR	Very rough	
SZ/SS	Sheared zone/ seam (Fault)	Dis	Discontinuous			
CZ/CS	Crushed zone/ seam	Thickness		Coating or Filling		
DZ/DS	Decomposed zone/ seam	7	100	j		
FZ	Fractured Zone	Zone	> 100 mm	Cn	Clean	
IS	Infilled seam	Seam	> 2 mm < 100 mm	Sn	Stain	
VN	Vein	Plane	< 2 mm	Ct	Coating	
<u> </u>	Contact			Vnr	Veneer	
				Fe	Iron Oxide	
HB	Handling break			Х	Carbonaceous	
DB	Dhilling break			Qz	Quartzite	
				MU	Unidentified mineral	
		Inclination				
		Inclination of defect is measured from perpendicular to and down the core axis.				
		Direction of defect is measured clockwise (looking down core) from magnetic north.				

# Test, Drill and Excavation Methods martens

#### Sampling

Sampling is carried out during drilling or excavation to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling or excavation provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples may be taken by pushing a thinwalled sampling tube, e.g. U₅₀ (50 mm internal diameter thin walled tube), into soils and withdrawing a soil sample in a relatively undisturbed state. Such samples yield information on structure and strength and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils. Other sampling methods may be used. Details of the type and method of sampling are given in the report.

#### Drilling / Excavation Methods

The following is a brief summary of drilling and excavation methods currently adopted by the Company and some comments on their use and application.

Hand Excavation - in some situations, excavation using hand tools, such as mattock and spade, may be required due to limited site access or shallow soil profiles.

Hand Auger - the hole is advanced by pushing and rotating either a sand or clay auger, generally 75-100 mm in diameter, into the ground. The penetration depth is usually limited to the length of the auger pole; however extender pieces can be added to lengthen this.

Test Pits - these are excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and, if it is safe to descend into the pit, collection of bulk disturbed samples. The depth of penetration is limited to about 3 m for a backhoe and up to 6 m for an excavator. A potential disadvantage is the disturbance caused by the excavation.

Large Diameter Auger (e.g. Pengo) - the hole is advanced by a rotating plate or short spiral auger, generally 300 mm or larger in diameter. The cuttings are returned to the surface at intervals (generally of not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube sampling.

Continuous Sample Drilling (Push Tube) - the hole is advanced by pushing a 50 - 100 mm diameter socket into the ground and withdrawing it at intervals to extrude the sample. This is the most reliable method of drilling in soils, since moisture content is unchanged and soil structure, strength etc. is only marginally affected.

Continuous Spiral Flight Augers - the hole is advanced using 90 - 115 mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling or insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface or, or may be collected after withdrawal of the auger flights, but they are very disturbed and may be contaminated. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively lower reliability, due to remoulding, contamination or softening of samples by ground water.

### Explanation of Terms (1 of 3)

consulting engi

Non-core Rotary Drilling - the hole is advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from 'feel' and rate of penetration.

Rotary Mud Drilling - similar to rotary drilling, but using drilling mud as a circulating fluid. The mud tends to mask the cuttings and reliable identification is again only possible from separate intact sampling (eg. from SPT).

Continuous Core Drilling - a continuous core sample is obtained using a diamond tipped core barrel of usually 50 mm internal diameter. Provided full core recovery is achieved (not always possible in very weak or fractured rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation.

#### In-situ Testing and Interpretation

#### Cone Penetrometer Testing (CPT)

Cone penetrometer testing (sometimes referred to as Dutch Cone) described in this report has been carried out using an electrical friction cone penetrometer.

The test is described in AS 1289.6.5.1-1999 (R2013). In the test, a 35 mm diameter rod with a cone tipped end is pushed continuously into the soil, the reaction being provided by a specially designed truck or rig which is fitted with an hydraulic ram system.

Measurements are made of the end bearing resistance on the cone and the friction resistance on a separate 130 mm long sleeve, immediately behind the cone. Transducers in the tip of the assembly are connected by electrical wires passing through the push rod centre to an amplifier and recorder unit mounted on the control truck. As penetration occurs (at a rate of approximately 20 mm per second) the information is output on continuous chart recorders. The plotted results given in this report have been traced from the original records. The information provided on the charts comprises:

- Cone resistance  $(q_c)$  the actual end bearing force divided by the cross sectional area of the cone, expressed in MPa.
- Sleeve friction  $(q_f)$  the frictional force of the sleeve (ii) divided by the surface area, expressed in kPa.
- (iii) Friction ratio - the ratio of sleeve friction to cone resistance, expressed in percent.

There are two scales available for measurement of cone resistance. The lower (A) scale (0 - 5 MPa) is used in very soft soils where increased sensitivity is required and is shown in the graphs as a dotted line. The main (B) scale (0 - 50 MPa) is less sensitive and is shown as a full line.

The ratios of the sleeve resistance to cone resistance will vary with the type of soil encountered, with higher relative friction in clays than in sands. Friction ratios of 1 % - 2 % are commonly encountered in sands and very soft clays rising to 4 % - 10 % in stiff clays.

In sands, the relationship between cone resistance and SPT value is commonly in the range:

q_c (MPa) = (0.4 to 0.6) N (blows/300 mm)

In clays, the relationship between undrained shear strength and cone resistance is commonly in the range:

# Test, Drill and Excavation Methods Explanation of Terms (2 of 3)

estimation of modulus or compressibility values to allow calculation of foundation settlements.

Inferred stratification as shown on the attached reports is assessed from the cone and friction traces and from experience and information from nearby boreholes etc. This information is presented for general guidance, but must be regarded as being to some extent interpretive. The test method provides a continuous profile of engineering properties, and where precise information on soil classification is required, direct drilling and sampling may be preferable.

#### Standard Penetration Testing (SPT)

Standard penetration tests are used mainly in noncohesive soils, but occasionally also in cohesive soils as a means of determining density or strength and also of obtaining a relatively undisturbed sample.

The test procedure is described in AS 1289.6.3.1-2004. The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm penetration depth increments and the 'N' value is taken as the number of blows for the last two 150 mm depth increments (300 mm total penetration). In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued. The test results are reported in the following form:

- Where full 450 mm penetration is obtained with successive blow counts for each 150 mm of say 4, 6 and 7 blows:
  - as 4, 6, 7 N = 13
- (ii) Where the test is discontinued, short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm

as 15, 30/40 mm.

The results of the tests can be related empirically to the engineering properties of the soil. Occasionally, the test method is used to obtain samples in 50 mm diameter thin walled sample tubes in clays. In such circumstances, the test results are shown on the borehole logs in brackets.

#### Dynamic Cone (Hand) Penetrometers

Hand penetrometer tests are carried out by driving a rod into the ground with a falling weight hammer and measuring the blows for successive 150mm increments of penetration. Normally, there is a depth limitation of 1.2m but this may be extended in certain conditions by the use of extension rods. Two relatively similar tests are used.

Perth sand penetrometer (PSP) - a 16 mm diameter flat ended rod is driven with a 9 kg hammer, dropping 600 mm. The test, described in AS 1289.6.3.3-1997 (R2013), was developed for testing the density of sands (originating in Perth) and is mainly used in granular soils and filling

Cone penetrometer (DCP) - sometimes known as the Scala Penetrometer, a 16 mm rod with a 20 mm diameter cone end is driven with a 9 kg hammer dropping 510 mm. The test, described in AS 1289.6.3.2-1997 (R2013), was developed initially for pavement sub-grade investigations, with correlations of the test results with California Bearing Ratio published by various Road Authorities.

#### Pocket Penetrometers

The pocket (hand) penetrometer (PP) is typically a light weight spring hand operated device with a stainless steel

consulting engi

Δ

strength,  $q_u$ , (UCS in kPa) of a fine grained soil in field conditions. In use, the free end of the piston is pressed into the soil at a uniform penetration rate until a line, engraved near the piston tip, reaches the soil surface level. The reading is taken from a gradation scale, which is attached to the piston via a built-in spring mechanism and calibrated to kilograms per square centimetre (kPa) UCS. The UCS measurements are used to evaluate consistency of the soil in the field moisture condition. The results may be used to assess the undrained shear strength, Cu, of fine grained soil using the approximate relationship:

 $q_u = 2 \times C_u$ .

It should be noted that accuracy of the results may be influenced by condition variations at selected test surfaces. Also, the readings obtained from the PP test are based on a small area of penetration and could give misleading results. They should not replace laboratory test results. The use of the results from this test is typically limited to an assessment of consistency of the soil in the field and not used directly for design of foundations.

#### Test Pit / Borehole Logs

Test pit / borehole log(s) presented herein are an engineering and / or geological interpretation of the subsurface conditions. Their reliability will depend to some extent on frequency of sampling and methods of excavation / drilling. Ideally, continuous undisturbed sampling or excavation / core drilling will provide the most reliable assessment but this is not always practicable, or possible to justify on economic grounds. In any case, the test pit / borehole logs represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of test pits / boreholes, the frequency of sampling and the possibility of other than 'straight line' variation between the test pits / boreholes.

#### Laboratory Testing

Laboratory testing is carried out in accordance with AS 1289 Methods of Testing Soil for Engineering Purposes. Details of the test procedure used are given on the individual report forms.

#### Ground Water

Where ground water levels are measured in boreholes, there are several potential problems:

- In low permeability soils, ground water although present, may enter the hole slowly, or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent prior weather changes. They may not be the same at the time of construction as are indicated in the report.
- The use of water or mud as a drilling fluid will mask any ground water inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water observations are to be made.

More reliable measurements can be made by installing standpipes, which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Α	st Drill a	nd	Excavati	on	Methods
				VII	
			Exp	lanalic	on of terms (3 of 3)
DRILLI	NG / EXCAVATION METHOD				•
HA AD/V AD/T	Hand Auger Auger Drilling with V-bit Auger Drilling with TC-Bit	RD RT RAB	Rotary Blade or Drag Bit Rotary Tricone bit Rotary Air Blast	NQ NMLC HQ	Diamond Core - 47 mm Diamond Core - 51.9 mm Diamond Core - 63.5 mm
AS HSA S	Auger Screwing Hollow Stem Auger Excavated by Hand Spade	RC CT PT	Reverse Circulation Cable Tool Rig Push Tube	HMLC DT NDD	Diamond Core - 63.5 mm Diatube Coring
BH JET	Tractor Mounted Backhoe Jetting	PC E	Percussion Tracked Hydraulic Excavator	PQ X	Diamond Core - 83 mm Existing Excavation
SUPPO	RT				
Nil C WB WATFR	No support Casing Wash bore with Blade or Bailer	S Sh WR	Shotcrete Shoring Wash bore with Roller	RB SN T	Rock Bolt Soil Nail Timbering
	<ul> <li>✓ Water level at date shown</li> <li>▷ Water inflow</li> </ul>		<ul><li>Partial water loss</li><li>Complete water loss</li></ul>		
GROU	INDWATER NOT OBSERVED (NO)	The obser surface se	vation of groundwater, whether pr epage or cave in of the borehole/t	esent or not, est pit.	was not possible due to drilling water,
GROU	INDWATER NOT ENCOUNTERED (NX)	The bore present in pit been l	nole/test pit was dry soon after ex less permeable strata. Inflow may eft open for a longer period.	, xcavation. H y have been	lowever, groundwater could be observed had the borehole/test

Low resistance: Rapid penetration possible with little effort from the equipment used. L

Μ Medium resistance: Excavation possible at an acceptable rate with moderate effort from the equipment used.

Н High resistance: Further penetration possible at slow rate & requires significant effort equipment.

R Refusal/Practical Refusal. No further progress possible without risk of damage/unacceptable wear to digging implement / machine.

These assessments are subjective and dependent on many factors, including equipment power, weight, condition of excavation or drilling tools, and operator experience.

#### SAMPLING

D	Small disturbed sample	W	Water Sample	С	Core sample				
В	Bulk disturbed sample	G	Gas Sample	CONC	Concrete Core				
U63	163 Thin walled tube sample - number indicates nominal undisturbed sample diameter in millimetres								
IESIIN	resting								
SPT	Standard Penetration Test to AS128	9.6.3.1-20	004 CPT	Static cone pen	etration test				

SPT 4,7,11 N=18	Standard Penetration Test to AS1289.6.3.1-2004 4,7,11 = Blows per 150mm. 'N' = Recorded blows per 300mm penetration following 150mm seating Dynamic Cone Penetration test to AS1289.6.3.2-1997	CPT CPTu PP	Static cone penetration test CPT with pore pressure (u) measurement Pocket penetrometer test expressed as instrument reading (kPa)
DCI	'n' = Recorded blows per 150mm penetration	FP	Field permeability test over section noted
Notes:		VS	Field vane shear test expressed as uncorrected
RW	Penetration occurred under the rod weight only		value)
HW	Penetration occurred under the hammer and rod weight	PM	Pressuremeter test over section noted
UB 20/00		PID	Photoionisation Detector reading in ppm
HB 30/80mm	Hammer double bouncing on anvil after 80 mm penetration	WPT	Water pressure tests
N=18	Where practical refusal occurs, report blows and penetration for that interval		

#### SOIL DESCRIPTION

Densi	ty	Cons	istency	Moistur	e	Streng	jth	Weath	nering
VL	Very loose	VS	Very soft	D	Dry	VL	Very low	EW	Extremely weathered
L	Loose	S	Soft	Μ	Moist	L	Low	HW	Highly weathered
MD	Medium dense	F	Firm	W	Wet	Μ	Medium	MW	Moderately weathered
D	Dense	St	Stiff	Wp	Plastic limit	Н	High	SW	Slightly weathered
VD	Very dense	VSt	Very stiff	WI	Liquid limit	VH	Very high	FR	Fresh
		Н	Hard			EH	Extremely high		

**ROCK DESCRIPTION**